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ABSTRACT This paper presents a new framework for human action recognition by fusing human motion
with skeletal joints. First, adaptive hierarchical depth motion maps (AH-DMMs) are proposed to capture the
shape andmotion cues of action sequences. Specifically, AH-DMMs are calculated over adaptive hierarchical
windows and Gabor filters are used to encode the texture information of AH-DMMs. Then, spatial distances
of skeletal joint positions are computed to characterize the structure information of the human body. Finally,
two types of fusion methods including feature-level fusion and decision-level fusion are employed to
combine the motion cues and structure information. The experimental results on public benchmark datasets,
i.e., MSRAction3D and UTKinect-Action, show the effectiveness of the proposed method.

INDEX TERMS Action recognition, depth data, skeleton joint, depth motion maps.

I. INTRODUCTION
Human action recognition has wide potential applications in
video analysis [1], [2], [4], Internet of Things [3], human-
computer interaction [5]–[7] and smart surveillance [8], [9].
Previous studies have mainly focus on analyzing human
action from videos captured by conventional RGB cameras.
Although significant progress has been achieved, recognizing
actions remains a challenging task due to some inherent
limitations of RGB data, such as illumination changes, par-
tial occlusions and clutter background. The availability of
low-cost and easy-to-operate depth sensors like Microsoft
Kinect enables easy access to depth data. Compared with
RGB data, depth data is robust to changes of lighting condi-
tions. Also, depth data simplifies tasks like foreground sub-
traction. In addition, depth data provides 3D information of
human bodies, which facilities the capture of human actions
in the depth direction [15].

The pipeline of human action recognition includes fea-
ture extraction, feature encoding and feature classifica-
tion. In this paper, previous methods are mainly split into
two categories: depth-based methods and skeleton-based
methods.

Depth-based methods: with the emerge of depth maps, var-
ious feature representations have been proposed for human
action recognition and three types of features have been
widely used. 1) Hyper-surface normals. Oreifej et al. [10]
proposed a histogram of oriented 4D surface normal
(HON4D) to capture complex joint motion and geometry
cues. Yang et al. [11] extended surface normals by grouping
local hyper-surface normals into poly-normal and aggregate
low-level poly-normals into Super Normal Vector (SNV).
Surface normals are used as local features of actions, which
show good robustness to partial occlusions. 2) Cloud points.
Li et al. [12] sampled a bag of 3D points for depth map
and employed an action graph to encode action evolution.
Wang et al. [13] proposed a random occupancy pattern (ROP)
features for 3D action recognition and used sparse coding to
encode them. Xia et al. [14] extracted local spatio-temporal
interest points (DSTIPs) from depth videos and constructed a
depth cuboid similarity feature (DCSF) to describe the local
3D depth cuboid around DSTIPs. 3) Depth motion maps
(DMMs). DMMs were proposed by Yang et al. [17]. They
first projected depth maps onto three orthogonal planes and
calculated global motion accumulations through entire video
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sequences to generate DMMs, then histogram of oriented
gradient (HOG) features were computed from DMMs as the
representation of the sequences. Zhang et al. [18] proposed
an edge enhanced depth motion map (E2DMM) that balances
the information weighing between shape and motion for
action recognition. To realize real-time action recognition,
Chen et al. [19] modified the DMMs by omitting the thresh-
old, and then adopted local binary patterns (LBP) to encode
texture information of DMMs in [20]. Bulbul et al. [21]
used Contourlet Transform (CT) on three DMMs to enhance
the smooth shape information of human actions. With the
popularity of deep learning methods, some methods began
to use deep learning for action recognition. For example,
Wang and Li, [22] calculated DMMs in three projected planes
and input each DMM to a Deep Convolutional Neural Net-
work (ConvNet) for classification. Generally, surface normals
and cloud points are local features which ignore global infor-
mation of human body. DMMs are obtained by calculating
accumulated motion of the entire action sequence, where the
temporal information of an action is ignored. Therefore, it is
difficult to recognize two actions with similar movements
and reverse temporal orders, such as actions ‘‘stand up’’ and
‘‘sit down’’.
Skeleton-based methods: There have been many action

recognition approaches based on skeletal joints [16]. Rep-
resentations based on displacements of skeletal joints are
widely used due to their simple structure. For example,
Yang et al. [23] proposed EigenJoints based on position
differences of joints to combine action information includ-
ing static posture, motion, and offset. Then a Naive-Bayes-
Nearest-Neighbor (NBNN) classifier was utilized to classify
actions. Zanfir et al. [24] proposed moving pose descriptor
to consider both pose information and differential quan-
tities of human body joints for low-latency action recog-
nition. Orientation-based methods are also popular since
they are robust to body size and camera view variations.
Sung et al. [25] computed the orientation matrix of each
human joint as human posture features and a hierarchical
maximum entropy Markov model (MEMM) was proposed
for recognition. Zhang et al. [26] utilized pairwise features,
including orientation between two joints and displacement of
one joint between two adjacent frames. Despite the effective-
ness of above skeleton-based methods, sole skeleton joints
are usually insufficient for recognition task, since problems
like partial occlusions will make the estimated skeleton joints
rather noisy.

Depth and skeleton fusion methods: Benefiting from the
depth maps and skeleton joints, fusion methods have been
proposed in the last years. An actionlet ensemble model
proposed by Wang et al. [41] is learnt to represent each
action and capture the intra-class variance. Chen et al. [42]
presented an approach that depth images, skeleton joint posi-
tions, and inertial signals are fused by utilizing three collab-
orative representation classifiers. Ji et al. [43] introduced a
skeleton embedded motion body partition approach embed-
ding the skeleton information into depth maps. The human is

partitioned to a set of motion parts, which can capture the
geometrical structure of human body. Furthermore, a sim-
plified Fisher vector encoding method is used to aggregate
local coarse features into a discriminative representation with
unified form. Lu et al. [44] proposed a multi-feature human
action recognition method based on depth images and skele-
ton data. Multi-feature included DMM (Depth motion map)
feature andQuard (Quadruples skeletal) feature. Then, a strat-
egy of multi-model probabilistic voting model was proposed
on the classification. Jalal et al. [45] proposed an online
HAR system which segments human depth silhouettes using
temporal human motion information as well as it obtains
human skeleton joints using spatiotemporal human body
information. Then the spatiotemporal multi-fused features
that concatenate four skeleton joint features and one body
shape feature are extracted. Zhu et al. [46] discussed another
feature-level fusion of these two features in by using random
forests method. Furthermore, Chen et al. [47] designed a
dataset, named UTD-MHAD, which consists of four tempo-
rally synchronized data modalities. These modalities include
RGB videos, depth videos, skeleton positions, and inertial
signals from a Kinect camera and a wearable inertial sensor
for a comprehensive set of 27 human actions. The database
can be used to study fusion approaches that involve using both
depth camera data and inertial sensor data.

In this paper, we show the complementary property
between depth and skeleton data for high accuracy human
action recognition task. Specifically, we present Adaptive
Hierarchical Depth Motion Maps (AH-DMMs) for capturing
human actions from depth data and present Reference Joint
based Distance Features (RDFs) for capturing human actions
from skeleton data. Compare with existing DMMs, our pro-
posed AH-DMMs preserves richer temporal and spatial infor-
mation of human bodies throughwhole action sequences. The
AH-DMMs is original proposed in our previous work [40].
In this work, we further present RDFs to characterize the
structure of human skeleton joints, and boost the perfor-
mance of AH-DMMs by fusing AH-DMMs and RDFs in both
feature-level and decision-level. For the feature-level fusion,
features of two modalities are merged before classification.
For the decision-level fusion, a soft decision-fusion rule is
used to combine predictions. The proposed method can not
only depicts the global motion and shape information, but
also takes local structure information of human actions into
consideration.What’s more, our method can encode temporal
order of action sequences and is adaptive to action speed
variations due to AH-DMMs. Our method is evaluated on
two benchmark datasets and achieves superior performances
over the state-of-the-art approaches. Main contributions of
this paper are four-fold.
• We propose an effective human action recognition
framework by combining motion features from depth
data with structure features from skeleton data.

• Beyond existing Depth Motion Maps (DMMs), we pro-
pose Adaptive Hierarchical Depth Motion Maps
(AH-DMMs) to capture richer temporal and spatial
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FIGURE 1. The pipeline of the proposed human action recognition framework.

information of human bodies through whole action
sequences.

• We present a new skeleton feature called Reference
Joint based Distance Features (RDFs), which boost the
performances of AH-DMMs by feature fusion in both
feature-level and decision-level.

• Our method is robust to noise, speed variations and
achieves better performances than existing methods on
MSRAction3D and UTKinect-Action datasets.

II. THE PROPOSED METHOD
A. OVERVIEW OF OUR FRAMEWORK
The pipeline of our framework is depicted in Figure 1, which
starts with the pre-processing of depth map sequences and
skeleton sequences. Then DMMs are calculated based on
adaptive hierarchical model, generating AH-DMMs which
can capture shape and motion cues. A Gabor filter is
employed to enhance the texture information of AH-DMMs.
Meanwhile, the spatial distances of skeletal joint positions
RDFs are computed to characterize the structure information
of human body. Finally, feature-level fusion and decision-
level fusion based on logarithmic opinion pool (LOGP) rule
are utilized to predict action type.

B. ADAPTIVE HIERARCHICAL DMMs
DMMs were first proposed by Yang et al. [17]. Given a depth
video sequence with N frames, each frame in the sequence
is projected onto three orthogonal planes and DMMs are
generated by calculating the difference between two consec-
utive projected maps. The formulation [40] of DMMs can be
expressed as:

DMM{f ,s,t} =
N∑
i=2

∣∣∣mapi{f ,s,t} − mapi−1{f ,s,t}∣∣∣ (1)

where mapi
{f ,s,t} refers to the projected map of the

i-th depth map on front, side and top view.
DMMs can effectively capture the motion and shape infor-

mation, but have the following drawbacks. First, DMMs
lose the temporal order of video sequences which is very
important for human action recognition. Two actions with

the same movement but reverse temporal order will hardly be
recognized using DMMs. The DMMs of such actions remain
the same and are not sufficiently discriminative. Moreover,
different people could have varied motion speed or frequency
when they perform the same action, which may cause inter-
class variations and have negative impact on the performance.
To solve these problems, we propose AH-DMMs to pre-
serve temporal information. AH-DMMs are calculated over
a series of temporal hierarchical windows, and the adaptive
windows are selected based on motion energy to make pro-
posed descriptors robust to action speed. The motion energy
ME (i) of the i-th frame can be calculated using the following
formula according to [11]. Here, we modify it by removing
the threshold for better computational efficiency [40]:

ME (i) =
3∑

v=1

i−1∑
j=1

num
(∣∣∣mapj+1v − map

j
v

∣∣∣) (2)

where the function num (·) returns the number of non-zero
elements in the difference map, v = {1, 2, 3} corresponds
to front, side and top view, i = 2, . . . ,N . ME (i) reflects
the accumulated motion energy from the 1-st frame to the
i-th frame, ME (1) is defined as 0.
For an action sequence, we calculate the motion energy

ME of each frame, denote it as ME = [ME(1),ME(2), . . . ,
ME(N )]. Then the temporal segments are obtained by the
adaptive hierarchical structure shown in Figure 2(a). In this
structure, each window size Wl and step length Sl in level l
can be computed as follows:

Wl = (
1
2
)l−1ME(N )Sl =

1
2
Wl (3)

After dividing ME of the sequence, the frame indices
of the segments are utilized to partition the action
sequence. Figure 3 presents a specific example of generating
AH-DMMs with three levels. TheME is normalized to [0, 1],
and ME(N )=1. In level 1, DMMs are computed from entire
sequence, according to formula(3), W1 = 1, S1 = 0.5.
In level 2, we subdivide action sequence to three over-lapping
windows, corresponding to W2 = 0.5, S2 = 0.25, and then
we compute DMMs in eachwindow. In level 3, the DMMs are
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FIGURE 2. Comparison of (a) adaptive hierarchical structure and
(b) temporal pyramid structure. Hlm denotes the m-th hierarchy
in the l -th level.

calculated in seven overlapping segments according toW3 =

0.25, S3 = 0.125. Consequently, eleven groups of DMMs
can be obtained form level 1 to level 3. Then DMMf, DMMs,
DMMt from all levels are normalized and concatenated to
form our AH-DMMf, AH-DMMs, AH-DMMt, respectively.
In contrast to the temporal pyramid that partitions

sequences equally in the time axis without overlapping [27],
as shown in Figure 2(b), the adaptive hierarchical structure
partitions sequences based on the distribution of motion
energy. Therefore, this structure is insensitive to speed vari-
ations. Compared with traditional DMMs, the proposed
AH-DMMs can preserve temporal information of action
sequences, more details of motion and more discriminative
shape cues can be involved, as Figure 4 shows.

Because depth maps lacks of texture information, Gabor
filters [28] are introduced to characterize the local appearance
and shape on AH-DMMs. In this paper, 40 Gabor filters
with five scales and eight orientations are generated, and
then convolve with the AH-DMMs. For front, side and top
views, a d-dimensional Gabor feature vector can be respec-
tively extracted. Then, these three vectors are normalized to
[−1, 1] for more accurate action classification and faster
convergence. Let gTA−DMMf , gTA−DMMs , gTA−DMMt denote
the normalized Gabor feature vectors extracted from three
different views. The final feature representation g is the
concatenation of three normalized feature vectors, defined as
follows:

g = [gTA−DMMf , gTA−DMMs , gTA−DMMt ] (4)

C. SKELETAL JOINT FEATURE EXTRACTION
The Kinect device provides 3D data. Figure 5 shows skele-
ton sequences of some actions from MSRAction3D dataset.
To encode the inner structure information of human body,
we unitize representations based on relative joint displace-
ments, which compute spatial displacements of coordinates

of human skeletal joints in the same frame at a time point.
In this paper, we calculate two skeleton features : pairwise
relative distance features (PDFs) and reference joint based
distance features (RDFs).

Let pi = (x, y, d) denote a joint of k th frame in a skeleton
sequence with N frames, and let n denote the number of joints
in one skeleton map, i = 1, . . . n. The PDFs are obtained by
calculating the difference between the location of joint i and
joint j :

pi,j = pi − pj, i, j = 1, . . . n, i 6= j (5)

The RDFs are obtained by calculating the coordinate differ-
ence of all joints with respect to a reference joint. Given the
location of a joint pi = (x, y, d) and a given reference joint
pc = (xc, yc, dc) in the world coordinate system, the reference
joint based distance are obtained using the following formula:

1p = pi − pc, i, c = 1, . . . n (6)

Then we cascade all the relative displacements from n joints
to generate our RDF :

RDFk = [1p1,1p2, . . . ,1pn] (7)

The joint distances of all frames are expressed as follows:

RDF = {RDF1,RDF2, . . .RDFN } (8)

The number of columns of RDF is then scaled from N to N ′

through bilinear interpolation:

RDF ′ = f (RDF) =
{
RDF ′1,RDF

′

2, . . .RDF
′

N ′
}

(9)

where f (RDF) is the interpolation function. The RDF ′ is
utilized as the final skeleton feature. In this paper, the hip
center joint is used as the reference, since the hip center joint
typically keeps stable for most actions.

D. COLLABORATIVE REPRESENTATION CLASSIFIER
Great classification performance and computational effi-
ciency of the collaborative representation classifier (CRC)
with l2 -norm regularization have been shown in image
classification [30], face recognition [29] and action
recognition [20].

Supposing that there are M training samples from
C classes of actions, each action sequence generates a fea-
ture vector g with d dimensions. The training set can be
denoted as G = [G1,G2, . . . ,GC ] ∈ Rd×M , where
Gj = [g1, g2, . . . , gmj ] denotes mj training samples from the
j-th class, (j = 1, 2, . . . ,C). Let x ∈ Rd denote a testing
sample, the collaborative representation [40] with l2 -norm
regularization can be mathematically represented as follows:

α̂ = arg min
α

{
‖x−Gα‖22 + λ ‖Lα‖22

}
(10)

where λ is a regularization parameter, α is a coefficient vector
corresponding to all training samples, and L is the Tikhonov
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FIGURE 3. The flowchart of generating AH-DMMs with three levels from a depth sequence. Llm denotes the
frame length of the m-th window in the l -th level and DMMlm refers to the m-th group DMMs in the l -th level.

regularization matrix, denoted as

L =


‖y− G1‖2 0

. . .

0 ‖y− GC‖2

 (11)

The addition of the regularization term in formula (10) can
make the least square solution stable, what’s more, it intro-
duces a certain amount of ’’sparsity’’ to the solution α̂,
however this sparsity is much weaker than that by l1 -norm
regularization. According to [40], the solution of CRC can be
derived as:

α̂ =
(
GTG+ λ · LTL

)−1
GT x (12)

After obtaining the coefficient vector, the residual errors
between the feature vector x and the approximations can be
calculated by:

rj (x) =
∥∥x−Gjα̂j

∥∥
2 (13)

FIGURE 4. Comparison between the proposed AH-DMMf with traditional
DMMf of actions ‘‘draw tick’’ and ‘‘high wave’’. It can be seen that
AH-DMMf captures the motion information of both the
whole action and sub-movements.

where α̂j is the coefficient vector associated with class j. Then
the class label of x can be obtained as follows:

class (x) = arg min
j=1,...,C

rj (x) (14)
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FIGURE 5. Skeleton sequences from MSRAction3D dataset.

E. CLASSIFICATION FUSION
In this paper, two types of fusion consisting of feature-level
fusion and decision-level fusion are considered to combine
the motion cues and structure information. In the feature-
level fusion, features of two modalities are merged before
classification. We concatenate AH-DMMs with RDFs as our
final representation.

In the decision-level fusion, LOGP is used to combine the
classification outcomes. LOGP is a soft decision-fusion rule
based on probabilistic decision. Its global membership func-
tion is estimated by the posterior probability of all classifiers.
The mathematical formula is as follows:

P(wj|x) =
n∏
i=1

pi(wj|x)αi (15)

or

log(P(wj|x)) =
n∑
i=1

αipi(wj|x) (16)

where i = 1, 2, . . . , n, n is the number of classifiers, C is the
number of classes, w is the label of each class and αi is the
weight of the ith classifier. In the CRC, the output function
rj(x) in formula(13) is the residual error between the feature
vector and the approximations. According to [31], we can
transform a linear function into a probabilistic model.

p(wj|x) =
eArj∑C

j=1 e
(Arj+B)

(17)

For simplicity, parameters A and B are set to A = −1 and
B = 0. When rj(x) is zero, it means that the residual errors
is zero, probability value is equal to 1. Conversely the closer
the rj(x) becomes to infinity, the closer the probability value
is to zero.

Combining formulae (15) and (17), the final class label of x
is obtained according to

class∗ (x) = arg max
j=1,...,C

P(wj|x)) (18)

TABLE 1. The performance of our AH-DMMs using different levels and
comparison with the baseline TP-DMMs on MSRAction3D dataset using
cross-subject setting.

III. EXPERIMENTS AND ANALYSIS
The proposed method is evaluated on two benchmark
datasets: MSRAction3D [12] and UTKinectAction [32]. In
this section, We firstly introduce the datasets briefly and
then describe their evaluation settings respectively, finally we
report the experimental results and analysis.

A. MSRAction3D DATASET
MSRAction3D dataset contains 567 videos of 20 actions and
each action is performed by 10 subjects for 2 or 3 times.
In this dataset, action sequences are collected from a single
view and recorded by three channels: RGB, depth and skeletal
joint locations. Here, we use the skeleton channel and depth
channel. The 3D locations of 20 joints are provided in this
dataset. This dataset is challenging since it contains quite
similar actions, such as ‘‘draw x’’ and ‘‘draw tick’’, both of
which have similar hands movements, as shown in Figure 6.

1) EXPERIMENTAL SETTINGS
To ensure fair comparisons, we follow the cross-subject
setting in [13], this setting uses subject 1, 3, 5, 7, 9 for
training and the remaining five subjects for testing. The
sizes of DMMf , DMMs, and DMMt are normalized to
102*52, 102*75, and 74*54 respectively, following [19].
The regularization parameter λ of CRC is assigned a value
ranging from 0.0001 to 1, the results are shown in Figure 7.
It can be seen that λ = 0.001 leads to the highest recog-
nition accuracy, so we finally choose 0.001 as the default
value.
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FIGURE 6. Simlar actions ‘‘draw x’’ and ‘‘draw tick’’ from MSRAction3D dataset.

FIGURE 7. Recognition accuracies (%) for AH-DMM with different settings
of λ and L.

2) EVALUATION OF THE AH-DMMs
We first evaluate the impact of the level l of our AH-DMMs.
Table 1 shows the recognition accuracies while changing the
value of l from 1 to 3. It can be observed that when l = 2,
the proposed AH-DMMs obtains the higest recognition accu-
racy 94.18% and computation time is 1.56s. The accuracy
confusion matrix of twenty actions in MSRAction3D dataset
is shown in Figure 8.

In order to verify the effectiveness of AH-DMMs, we com-
pare it with the baseline method: temporal pyramid based
DMMs (TP-DMMs),the experimental results are shown
in Table 1. It can be seen that AH-DMMs performs better
than TP-DMMs when l = 2 and 3. It is because that
AH-DMMs employed motion energy-based segmentation

TABLE 2. Comparison of the performance using different texture
descriptors on AH-DMMs (l=2).

TABLE 3. The recognition accuracies of RDFs and PDFs on MSRAction3D
dataset using different classifiers.

strategy so it can adapt to action speed variations, whereas
TP-DMMs divide video sequence equally without overlap-
ping. What’s more, AH-DMMs can capture more discrim-
inative motion cues because they encode the information
between two subsequences.

In addition, we have compared the performance of AH-
DMMs when using different texture descriptors: Gabor,
HOG, LBP and GLCM descriptors. The experimental results
are shown in Table 2. It can be seen that Gabor descriptor
performs better than other descriptors. Therefore, the Gabor
descriptor is chosen to characterize the local appearance and
shape on AH_DMMs.
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FIGURE 8. The confusion matrix of AH-DMMs for MSRAction3D dataset.

FIGURE 9. The confusion matrix of proposed decision-level fusion method: AH-DMMs + RDFs(DF) for
MSRAction3D dataset.

3) EVALUATION OF THE SKELETON FEATURES
We also compare the performance of RDFs with PDFs when
using different classifiers : CRC, KELM and SVM. The
experimental results are shown in Table 3. It can be observed
that RDFs descriptor leads to higher accuracies than PDFs
descriptor, and CRC classifier performs better than KELM
and SVM.

4) COMPARISON WITH THE STATE-OF-THE-ART
We further compare the performance of our method with
several state-of-the-art methods on theMSRAction3D dataset

and report the results in Table 4. It can be seen that
our feature-level fusion method: AH-DMMs + RDFs(FF)
achieves 93.45% recognition accuracy; our decision-level
fusion approach AH-DMM + RDFs(DF) achieves the high-
est recognition accuracy of 97.13%. Decision level fusion
approach works better than feature-level fusion approach.

The most comparable methods with our approach are
DMM-Quard [44] and Multi-Fused Features [45]. From
Table 4, we can see that DMM-Quard [1], [44] approach
which employed DMMs achieves 91.30% recognition accu-
racy, which is much lower than our decision-level fusion
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FIGURE 10. Sample images of from UTKinect-Action dataset. Action type from top to bottom: ‘‘pickup’’, ‘‘carry’’,‘‘walk’’. It can be seen
that the action‘‘carry’’ and‘‘walk’’ have similar lateral motion patterns, and it has complex background.

approach AH-DMM + RDFs(DF). The Multi-Fused Fea-
tures [45] approach which fused depth and skeleton informa-
tions obtains 93.30% accuracy, which is 3.73% less than the
accuracy of our AH-DMMs + RDFs(DF) method. Besides,
our AHDMMs + RDFs(DF) descriptor outperforms bet-
ter than other depth-based methods such as‘‘ROP’’ [13],
‘‘HOG3D + LLC’’ [33], ‘‘Super Normal Vector’’ [50],
‘‘HON4D’’ [36], ‘‘Hierarchical 3DKernel Descriptors’’ [34].
Compared with the skeleton + depth based methods, such
as ‘‘Actionlet ensemble’’ [41], ‘‘Multi-Fused Features’’ [45],
and ‘‘Skeleton embedded’’ [43], the accuracy of our
AH-DMMs + RDFs(DF) is higher than them. Our method

performs better than these methods mainly attributing to
following three aspects. Firstly, our AH-DMMs can suf-
ficiently capture temporal motion information of human
actions, and our RDFs can effectively encode the spatial
structure information of human body. Secondly, more details
and more abundant information of motion can be extracted
from human actions; Thirdly, by combining AH-DMMs
with RDFs, motion features and structure features can be
complementary to each other. The confusion matrix of our
decision-level fusionmethod:AH-DMMs+RDFs(DF) shown
in Figure 9. The confusion matrix shows that 15 actions are
100% correctly recognized. The similar actions ‘‘draw x’’
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TABLE 4. Comparison with the state-of-the-arts on MSRAction3D dataset
under cross-subject setting. ( ‘‘D’’ is short or depth feature. ‘‘S’’ is short
for skeleton feature.)

TABLE 5. Comparison with the state-of-the-arts on UTKinect-Action
dataset under cross-subject setting. (‘‘D’’ is short or depth feature. ‘‘S’’ is
short for skeleton feature.)

and ‘‘draw tick’’ , ‘‘horizontal wave’’ and ‘‘high wave’’ are
successfully distinguished.

B. UTKinect-ACTION DATASET
The UTKinect-Action dataset contains 10 types of human
actions in indoor settings and each action is performed twice
by 10 subjects. It has totally 199 action sequences. The
3D locations of 20 joints are provided in this dataset. Unlike
MSRAction3D dataset, the background of depth maps in
UTKinect-Action dataset isn’t clear (see Figure 10), which

FIGURE 11. The confusion matrix of our feature-level fusion method:
AH-DMMs + RDFs(FF) for UTKinect-Action dataset.

FIGURE 12. The confusion matrix of our decision-level fusion method:
AH-DMMs + RDFs(DF) for UTKinect-Action dataset.

brings difficulty in extracting features based on depth maps.
This is a difficult dataset due to its high intra-class varia-
tions and complex background. The evaluation setting in this
dataset is stili cross-subject setting: subjects (1, 3, 5, 7, 9)
are used to train the model and the rest subjects are used
for testing. And the parameter settings for UTKinect-Action
dataset are the same for MSRAction3D dataset.
Comparison With the State-of-the-Art: We report the

experimental results in Table 5. It can be seen that our feature-
level fusion method: AH-DMMs + RDFs(FF) achieves
93.94% recognition accuracy in UTKinect-Action dataset.
And decision-level fusion method: AH-DMMs+ RDFs(DF)
achieves the highest recognition accuracy of 98.0% in this
dataset. Table 5 also shows the comparison with the state-of-
the-art methods, and the proposed AH-DMMs + RDFs(DF)
also performs best. In addition, AH-DMMs + RDFs(DF)
outperforms some deep learningmethod such as ‘‘LSTM [37]
’’ and ‘‘Ensemble TS-LSTM [38]’’. Compared with the
skeleton + depth based methods STIP + Joint + RFs [46]
and Multiple Features + RFs [50], the accuracy of our
AH-DMMs + RDFs(DF) is 6.1% and 5.1% higher
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respectively. These experimental results also proves the effec-
tiveness and robustness of our method.

The confusion matrix of AH-DMMs + RDFs(FF) and
AH-DMMs + RDFs(DF) are shown in Figure 11 and
Figure 12 respectively. As shown in Figure 12, 9 actions
out of 10 actions are 100% correctly recognized. Only one
action ‘‘walk’’ is confused with the action ‘‘carry’’. The
similar lateral motion patterns of these two actions (as shown
in Figure 10) lead to this classification error.

IV. CONCLUSIONS
This paper shows the complementary property between depth
data and skeleton data for human action recognition task.
We present the AH-DMMs feature to describe human actions
in the depth data. Compared with existing DMMs method,
the proposed AH-DMMs feature preserves richer motion and
temporal information of human bodies. Meanwhile, the AH-
DMMs are adaptive to action speed variations for using
energy-based hierarchical structure. To improve the perfor-
mance of AH-DMMs, we further present the skeletal feature
called RDFs to characterize the detail structure information
of human body. Both feature-level and decision-level fusion
are considered to combine the motion cues and structure
information. Extensive experimental results show that our
method outperforms these existing approaches on benchmark
datasets, which verifies that the combination of depth and
skeleton data benefit the human action recognition task.
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