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Abstract

Finding high quality paths within a limited time in config‐
uration space is a challenging issue for path planning.
Recently, an asymptotically optimal method called fast
marching tree (FMT*) has been proposed. This method
converges significantly faster than its state-of-the-art
counterparts when addressing a wide range of problems.
However, FMT* appears unable to solve the narrow
passage problem in optimal path planning, since it is based
on uniform sampling. Aiming at solving this problem, a
novel region-based sampling method integrating global
scenario information and local region information is
proposed in this paper. First, global information related to
configuration space is extracted from an initial sample set
obtained via hybrid sampling. Then, local regions are
constructed and local region information is captured to
make intelligent decisions regarding regions that are
difficult and need to be boosted. Finally, the initial sample
set is sent to FMT* using a modified locally optimal one-
step connection strategy in order to find an initial and
feasible solution. If no solution is found and time permits,
the guided hybrid sampling will be adopted in order to add
more useful samples to the sample set until a solution is
found or the time for doing so runs out. Simulation results
for six benchmark scenarios validate that our method can
achieve significantly better results than other state-of-the-
art methods when applied in challenging scenarios with
narrow passages.

Keywords Optimal Path Planning, Narrow Passage
Problem, Non-uniform Sampling, Region-based

1. Introduction

Over the past number of decades, path planning in static
scenarios has been extensively studied. In terms of config‐
uration space, the basic problem can be generally described
as computing a collision-free path for an object to move in,
from a given start configuration to a goal configuration.
Sampling-based methods such as probabilistic roadmaps
(PRM) [1], rapidly exploring random trees (RRT) [2] and
the many variants of these have shown outstanding
performance, especially in high-dimensional configuration
space. However, traditional sampling-based methods do
not pay much attention to path quality (path cost), which
can be measured in terms of length, clearance, smoothness,
energy consumption, etc. Hence, when considering path
quality, the majority of traditional methods produce
suboptimal solutions. This phenomenon has promoted the
study of optimal path planning, which targets improved
path quality.

Concerning path quality, recent asymptotically optimal
sampling-based methods have shown promising results.
Karaman and Frazzoli provide a definition of asymptotic
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optimality and prove that PRMstar (PRM*), rapidly-
exploring random graph (RRG) and RRTstar (RRT*) can
converge to an optimal solution, as the number of samples
approaches infinity, with probability one [3]. Although
these methods have solutions that can be improved over
time, they do not guarantee a reasonable rate of conver‐
gence. To compensate for this problem, many variants of
PRM* and RRT* have been proposed for improving
efficiency. Building on PRM*, some works [4, 5] that
provide guaranteed sub-optimality are presented, where
optimality is traded for faster computation. Salzman and
Halperin present the lower bound tree RRT (LBTRRT)
method [6] which is also asymptotically-near optimal. In
order to mitigate the greediness of RRT*, RRTsharp (RRT#)
[7] and RRTx (RRTx) [8] are developed using the idea of
lifelong planning A* (LPA) [9] in a rewiring cascade. A lazy
strategy is also adopted in lazy PRM* [10] and lazy RRG
[11], where the core idea is to delay the collision check until
it absolutely necessary. Additionally, many different
heuristics for speeding up convergence are presented in
[12- 17].

Another asymptotically optimal method, proposed by
Janson and Pavone, is fast marching trees (FMT*) [18]. To
alleviate the inherently unordered search of sampling-
based methods, FMT* extends graph-search methods to
sampling-based methods and concurrently performs graph
construction and graph search within cost-to-come space.
It is faster than PRM* and RRT* in terms of converging to
an optimal solution within many different scenarios.
However, FMT* selects a predetermined number of
samples and is not an any time method. Generally, an any
time method can quickly find an initial feasible solution
and then, given more computation time, improve the
solution towards an optimal solution [19]. As FMT* selects
a predetermined number of samples, if a lower cost path is
needed, it must increase the number of samples and replan.
Moreover, it is difficult to select an appropriate number of
samples, which is problem-dependent. To solve these
problems, an anytime version FMT (aFMT*) is adopted in

[20]. It chooses a small number of samples and applies
FMT*, then doubles this number and repeats the process if
time permits. In addition, to speed up convergence, motion
planning using lower bounds (MPLB) [20] extends aFMT*
by including the lower bounds on cost, while batch
informed trees (BIT*) [21] introduces an ellipsoidal heuris‐
tic. However, as a sampling-based method, FMT* with a
uniform sampling strategy suffers from the notorious
narrow passage problem [22], where sampling in small
volumes is difficult. If a robot has to pass a narrow passage
to arrive at the goal position in a scenario, it may cause
significant challenges for FMT* and the above noted
extended methods.

To cope with the narrow passage problem, many non-
uniform sampling strategies have been proposed to
increase the proportion of free configurations in some
areas. These include obstacle-based PRM (OBPRM) [23]
and Gaussian PRM [24] sample nodes near the surfaces of
obstacles; a bridge test sampler [25] generates nodes inside
narrow passages. Medial axis PRM (MAPRM) [26] retracts
nodes to the medial axis of the free space. Although there
exist many sampling strategies, no one outperforms all
others for all problem instances. To achieve a better
distribution of samples, different sampling strategies are
combined in [27, 28]. In addition, region-based methods
[29,30] divide the configuration space into some local
regions and use local region information to decide where
to boost sampling intelligently, or which sampler to apply.
However, some region-based methods use only the local
region information and no other global information for
guiding the region classification. Concerning global
information, Rantanen used the connectivity of the entire
PRM roadmap to decide which regions were useful [31].

In this paper, we propose a region-based sampling method
integrating global scenario information and local region
information to solve the narrow passage problem in
optimal path planning. The flowchart for doing so is shown
in Fig.1. First, hybrid sampling is adopted to sample a small
predetermined number of samples. These samples can be
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Figure 1. Flowchart. Our method is primarily described in section 2 and section 3, and corresponds to the pipeline shown in this figure.
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classified into three types: uniform (blue), Gaussian (green)
and bridge (red). Second, the global scenario is character‐
ized based on the proportion of these samples. Third, the
configuration space is partitioned into regions and local
region information is exploited to determine the difficulties
of regions. According to the difficulties of regions, we
classify the regions into three categories: easy (cyan),
normal (purple) and difficult (orange). Then, more samples
(yellow) are added to the difficult regions. Finally, the
initial sample set is sent to FMT* with a modified locally
optimal one-step connection strategy to solve the optimal
path planning problem. If our method cannot find a
solution on the current sample set and if extra time is
available, the following process is repeated: double the
number of samples using the guided hybrid sampling and
apply FMT*. Since our goal is to find a low-cost solution in
challenging scenarios within the shortest space of time, a
novel measure of cost called harmonic mean cost is also
utilized for evaluation to better describe the performance
of asymptotically optimal methods.

The remainder of this paper is organized as follows. Section
2 describes some preliminaries, including FMT*, aFMT*, a
modified locally optimal one-step connection strategy of
FMT* and quartiles. Section 3 gives the details of our
method. Experiments and discussions pertaining to six
scenarios are shown in section 4. Finally, we come to
conclusions and discuss possible extensions in section 5.

2. Preliminaries

Let C∈R d  be a configuration space (C-space) with d
dimension, while C free and Cobstacle denote free space and
obstacle space, respectively. The configuration of a robot is
described as x∈C . The start configuration is xinit∈C free and
the goal region Cgoal⊆C free is a set of goal configurations. A
function σ : 0,1 → R d  is called a path if it is continuous.
Therefore, a path planning problem can be defined as
(C free,xinit ,Cgoal) to find a feasible path σ, which lies in C free,
such that σ(0)= xinit  and σ(1)∈Cgoal . In addition, the cost
function c(σ) calculates the arc length of σ with respect to
the Euclidean metric. Therefore, an optimal path planning
problem is to find a feasible path σ * such that
c(σ *)=min{c(σ) :σ is feasible}.

2.1 Fast Marching Tree

Fast marching tree is an asymptotically optimal method. Its
anytime version is outlined in Alg.1 and its notations and
functions are described in Tab.1. First, aFMT* samples a
small number of free samples; then, these samples, xinit and
at least one sample in Cgoal  are placed into the sample set V
(Alg.1, line 3). The set V  is partitioned into three subsets,
Vunvisited , Vopen and Vclosed  (Alg.1, line 4). The algorithm repeats
the following process: the lowest-cost node z is chosen from
Vopen (Alg.1, line 17). For each neighbour x of z in Vunvisited ,

aFMT* finds its neighbours Ynear  in Vopen and a locally
optimal one-step connection from ymin to x (Alg.1, lines
8-10). If the connection from ymin to x is collision-free, add
this edge to the tree and move x from Vunvisited  to Vopen (Alg.
1, lines 11-13). After each neighbour x of z has been
traversed, z is moved from Vopen to Vclosed  (Alg.1, line 14). This
process repeats until Vopen is empty (Alg.1, lines 15-16). If
time is available, double n and repeat the algorithm (Alg.
1, line 18).

As sampling-based methods, FMT* and extended methods
[20, 21] employing a uniform sampling strategy meet the
challenge posed by the narrow passage problem. To cope
with this situation, they have to increase the number of
samples until there are enough samples in narrow passag‐
es. Obviously, this is a time-consuming process. Non-
uniform sampling strategies are widely used to solve the
narrow passage problem and the asymptotic optimality of
FMT* with a non-uniform sampling strategy has already
been demonstrated in [18]. Therefore, in this paper, a novel
non-uniform sampling method will be applied in FMT* to
solve the narrow passage problem.

function/notation description

SampleFree(n) return n random free configurations

Near(x,k ,V ) return k nearest neighbours of x in V

CollisionFree(x,y)
return false if the straight line from x to y collides with
obstacles

Cost(x,y) cost of the straight line from x to y

CostT (x) cost of the path from xinit to x on the tree T

CostToGo(x) cost of the straight line from x to Cgoal

Vunvisited
samples that have not been considered for addition to the
tree

Vopen
samples that have been added to the tree and are
considered for further connections

Vclosed
samples that have been added to the tree and are no
longer considered for further connections

Table 1. The Definitions of Notations and Functions in FMT*

Another problem, i.e., the locally optimal one-step connec‐
tion strategy of FMT* (Alg.1, line 10), makes it difficult to
add a new node to the tree when the ymin lies in a narrow
passage. An illustration of this problem is given in Fig.2(a)
-(c). In Fig.2(a), FMT* selects the lowest-cost node z in Vopen
(Alg.1, line 17) and finds its neighbours Xnear  in Vunvisited
(Alg.1, line 7). For each x in Xnear , FMT* searches for a
locally optimal one-step connection (Alg.1, line 10). Here,
x1 and x2 select y as ymin, and x3 and x4 select z as ymin. Only
the connection from z to x3 is collision-free; thus, x3 and this
connection are added to the tree (Alg.1, lines 11-13).
Following this step, z is moved to Vclosed  and is no longer
considered for further connections (Alg.1, line 14). Then, x3
is moved to Vopen (Alg.1, line 14) and selected as the next z
(Alg.1, line 17). In Fig.2(b), in the second iteration, x1, x2 still
selects y as ymin and x4 selects z as ymin (Alg.1, line 10). None
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of these connections are collision-free. Then, z is moved to
Vclosed  (Alg.1, line 14) and y is selected as the next z (Alg.1,
line 17). In Fig.2(c), in the final iteration, x1, x2 and x4 select
z as ymin (Alg.1, line 10). All of these connections are invalid.
Then, z is removed from Vopen and Vopen is empty. FMT*
returns a FAILURE outcome.

To overcome the above problem, we made a modification
to the locally optimal one-step connection strategy of FMT*.
Namely, if x has selected y as ymin in previous iterations,
this y cannot be ymin of the x again. The modified strategy
is illustrated in Fig.2(a) andFig.2(d). In Fig2.(a), the invalid
connections are marked by x1 and x2. In Fig.2(d), namely
the second iteration, x1 and x2 select z rather than y as
ymin. The connection between x2 and z is collision-free.
Then, x2 and this connection will be added to the tree, and
the tree successfully grows out of this narrow passage.
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Figure 2. The locally optimal one-step connection strategy of
FMT* is illustrated in (a)-(c). The modified locally optimal one-step
connection strategy is illustrated in (a) and (d). Obstacles are
coloured grey. The edges of the tree are depicted by solid black
lines. The valid and invalid connections are depicted by solid and
dotted lines, respectively.

2.2. Quartiles

In descriptive statistics, the quartiles of a ranked set of data
values are the three points that divide the data set into four
equal groups, each group comprising a quarter of the data
[32]. As shown in Fig.3, the lower quartile Q1 is defined
as the middle value between the smallest value and the
median of the data set. The median Q2 is the median of
the data set. The upper quartile Q3 is the middle value
between the median and the highest value of the data
set. The interquartile range IQR is the difference between
the upper and lower quartiles. The IQR is a relatively
robust statistic compared to the standard deviation and
the range, and can be used to characterize the data outliers
lying outside the defined fences. The fences are defined as
follows:

IQR = Q3 −Q1

lower inner f ence = Q1 − 1.5 ∗ IQR
upper inner f ence = Q3 + 1.5 ∗ IQR
lower outer f ence = Q1 − 3 ∗ IQR
upper outer f ence = Q3 + 3 ∗ IQR

(1)

A point beyond an inner fence on either side is considered
as a mild outlier, while a point beyond an outer fence is
considered as an extreme outlier. The quartiles and the
fences will be used in the region classification.

Figure 2. The locally optimal one-step connection strategy of FMT* is
illustrated in (a)-(c). The modified locally optimal one-step connection
strategy is illustrated in (a) and (d). Obstacles are coloured grey. The edges
of the tree are depicted by solid black lines. The valid and invalid connec‐
tions are depicted by solid and dotted lines, respectively.

Algorithm 1: Anytime fast marching tree (aFMT*)
Input: xinit, Cgoal , initial number of samples n0
Output: T

1 V ← {xinit}; n← n0;
2 while time permits do
3 V ← V ∪ SampleFree(n); E← ∅; T ← (V, E);
4 Vunvisited ← V\{xinit}; Vopen ← {xinit}; Vclosed ← ∅;
5 z← {xinit};
6 while z /∈ Cgoal do
7 Vnew ← ∅; Xnear ← Vunvisited ∩ Near(z,k,V);
8 for x ∈ Xnear do
9 Ynear ← Vopen ∩ Near(x,k,V);

10 ymin ← argminy∈Ynear{CostT(y) + Cost(y,x)};
11 if CollisionFree(ymin, x) then
12 E← E ∪ (ymin, x);
13 Vnew ← Vnew ∪ x; Vunvisited ← Vunvisited\{x};
14 Vopen ← (Vopen ∪Vnew)\{z}; Vclosed ← Vclosed ∪ {z};
15 if Vopen = ∅ then
16 break;
17 z← argminy∈Vopen{CostT(y) + CostToGo(y)};
18 n = 2n;
19 return T = (Vopen ∪Vclosed, E)

2.2 Quartiles

In descriptive statistics, the quartiles of a ranked set of data
values are the three points that divide the data set into four
equal groups, each group comprising a quarter of the data
[32]. As shown in Fig.3, the lower quartile Q1 is defined as
the middle value between the smallest value and the
median of the data set. The median Q2 is the median of the
data set. The upper quartile Q3 is the middle value between
the median and the highest value of the data set. The
interquartile range IQR is the difference between the upper
and lower quartiles. The IQR is a relatively robust statistic
compared to the standard deviation and the range, and can
be used to characterize the data outliers lying outside the
defined fences. The fences are defined as follows:

3 1
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A point beyond an inner fence on either side is considered
as a mild outlier, while a point beyond an outer fence is
considered as an extreme outlier. The quartiles and the
fences will be used in the region classification.
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Figure 3. Box plot with quartiles and an interquartile range

3. Region-specific Hybrid Sampling Method

3.1 Hybrid Sampling

The hybrid sampling fully combines a uniform sampler, a
Gaussian sampler [24] and a bridge test sampler [25], and
is described in Alg.2 and Fig.4. An initial sample set V  is
generated by the hybrid sampling and these samples can
be classified into three types: uniform (Alg.2, line 4),
Gaussian (Alg.2, line 9) and bridge (Alg.2, line 13). Different
from [27], our hybrid sampling does not filter out any type
of free samples. Therefore, our hybrid sampling is a
uniform sampling strategy and works almost as fast as a
uniform sampler. Different from a uniform sampler, our
hybrid sampling provides more information about global
scenarios for learning.

3.2 Global Scenario Learning

Based on these different types of samples, we present three
measures for characterizing the global scenario. The first is
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the ratio of free samples to all samples. It can be calculated
by:

# = # # #
# = # #
# = # # * 2 # * 3

#= [0,1]
# #

free uniform gaussian bridge
failed attempts free
collision gaussian bridge failed

freefreeRatio
free collision

+ +
-
+ +

Î
+

(2)

Here, # x  represents the number of x. This measure can
estimate the volume of C free  and Cobstacle.  The bigger the
volume of Cobstacle, the bigger the #collision and the closer the
freeRatio approaches zero. When the freeRatio is close to zero,
it is difficult to obtain a free sample through a uniform
sampler. Moreover, if collision samples are also added to
sample set V  to construct local regions as in [30], more time
has to be spent on calculating the nearest neighbours, while
nearest neighbour queries may serve as the computational
bottleneck  of  asymptotically-optimal  methods  [33].
Therefore, hybrid sampling is adopted in this paper and only
free samples are added to the sample set V .

The second and third measures are the ratio of bridge
samples to uniform samples and the ratio of Gaussian
samples to uniform samples, which are named buRatio and
guRatio, respectively, as follows:

uniform

gaussian

bridge 

timenumber

Figure 4. Hybrid Sampling. From top to bottom, the number of each type of
samples is on the increase, and the time cost on them is on the decrease.

Algorithm 2: Hybrid Sampling
Input: number of samples n0
Output: sample set V

1 while the number of free samples is less than n0 do
2 x1 ← a random configuration;
3 if x1 ∈ C f ree then
4 x1.type = uni f orm; add x1 to the sample set V;
5 continue;
6 d← a distance chosen according to a Gaussian distribution;
7 x2 ← a random configuration at distance d from x1;
8 if x2 ∈ C f ree then
9 x2.type = gaussian; add x2 to the sample set V;

10 continue;
11 x3 ← (x1 + x2)/2;
12 if x3 ∈ C f ree then
13 x3.type = bridge; add x3 to the sample set V;
14 continue;

#= [0,1]
#
#= [0,1]
#

bridgebuRatio
uniform
gaussianguRatio
uniform

Î

Î
(3)

The buRatio can characterize whether configuration space
obstacles are evenly distributed and can be used to guide
sampling towards more important areas. When the buRatio
is close to zero, it is likely that there will be large open areas
in the scenario, because the configuration space obstacles
are not evenly distributed. On the contrary, when the
buRatio is close to one, it is likely that the scenario will be
cluttered with obstacles. Two corresponding instances are
illustrated in Fig.5(a) and Fig.5(b), respectively. In Fig.
5(a), there are large open areas in the scenario and as such,
the buRatio is small. In Fig.5(b), the scenario is cluttered with
obstacles and these obstacles are almost evenly distributed;
as such, the buRatio is large. Since it is unnecessary to keep
a large number of samples in large open areas, we can use
the buRatio and the guRatio to adjust the proportion of three
types of samples in the guided hybrid sampling. This will
be discussed in following subsections.

In addition, as shown in Fig.6, combining the freeRatio and
the buRatio can provide additional information about
narrow passages. When the freeRatio and the buRatio are
both small, it is likely that the scenario contains narrow
passages, and more attention should be given to this
scenario.

3.3 Local Region Learning

3.3.1 Region Construction

There are many ways in which to construct a set of regions
[28-31]. Our region construction method is related to [30]
but  differs  in  two aspects.  First,  we only  consider  free
samples. Second, according to the sample type, start, goal,
bridge and Gaussian samples have priority in terms of
deciding whether to be selected as a region centre. The region
construction method is depicted in Alg.3. Each new region
centre is randomly selected from the samples that are not
already in other regions in the subsets of V  (Alg.3, line 3).
Neighbouring samples are selected from V  (Alg.3, line 4).
Each new region radius is the maximum distance from the
region centre to the samples in this region (Alg.3, line 7),
while  each  new region’s  average  radius  is  the  median
distance from the region centre to the samples in this region
(Alg.3, line 8). Then, the buRatio and the guRatio of this region
are calculated (Alg.3, line 10). Different regions may overlap
in some areas.  When all  samples are included in some
regions,  the region construction is  completed.  A region
construction case is illustrated in Fig.7.

3.3.2 Region Classification and Boosting

In [30], the entropy of the regions is used to classify the
regions into four classes: free, surface, narrow and blocked.
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However, to achieve relatively good performance in terms
of classification, several thresholds should be fine-tuned in
different scenarios. Therefore, it is crucial to develop a
method that is scenario-independent and requires as little
as possible user intervention. In this paper, a novel method
based on statistics is introduced to classify the regions.

Since only free samples are stored, the scale of the radius
for different regions varies dramatically. As shown in Fig.
7, the region radius is small in open areas, while large in

(a) (b)

Figure 5. The buRatio can characterize whether configuration
space obstacles are evenly distributed. Uniform, Gaussian and
bridge samples are coloured blue, green and red, respectively.
Obstacles are coloured grey.

Figure 5. The buRatio can characterize whether configuration space obstacles
are evenly distributed. Uniform, Gaussian and bridge samples are coloured
blue, green and red, respectively. Obstacles are coloured grey.

by:

# f ree = #uni f orm + #gaussian + #bridge
# f ailed = #attempts− # f ree

#collision = #gaussian + #bridge ∗ 2 + # f ailed ∗ 3

f reeRatio =
# f ree
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Figure 6. Combining the freeRatio and the buRatio can provide additional
information about narrow passages

Algorithm 3: Region Construction.
Input: initial sample set V, which contains n0 samples and initial

number of samples in each region k′
Output: region set R

1 partition V into five subset: Vstart, Vgoal , Vbridge, Vgaussian, Vuni f orm
2 traverse each subset according to the above sequence
3 while there exists an unmarked sample x in the current subset do
4 N ← Near(x, k′, V);
5 construct a new region r;
6 r.center ← x; r.v← {x ∪ N};
7 r.radius←maximum distance from x to each neighbour in

N;
8 r.avgradius←median distance from x to each neighbour in

N;
9 count the number of bridge, Gaussian and uniform samples

in this region: r.bridge, r.gaussian and r.uni f orm;
10 r.buRatio = r.bridge

r.uni f orm ; r.guRatio = r.gaussian
r.uni f orm ;

11 add r to R;
12 mark x and N;

cluttered areas. Intuitively, we can use the region radius as
a measure to determine the difficulty of a region. However,
maximum and mean are not robust statistics, and they may
be susceptible to outliers. Therefore, we chose the average
radius rather than the radius to characterize a region.
Similarly, the region average radius is small in open areas
and large in cluttered areas. In addition, the quartiles were
adopted to define the thresholds of the region’s average
radius, which was in turn utilized to classify the regions.
According to the difficulties of regions, we classified them
into the following categories: easy, normal and difficult.

Each region average radius is pushed into a queue. For this
queue, we compute the lower quartile Q1, the median Q2,
the upper quartile Q3, the interquartile range IQR, the lower
fences and the upper fences. First, the region where average
radius is beyond the lower fences or the upper fences can
be considered as an "outlier"; thus, this region can be
directly classified as easy or difficult. The only exception is
the region where the average radius is higher than the
upper outer fence and where the region centre is not a start
or a goal. This case is illustrated in the purple region in the
lower right of Fig.8. As the centre of this region lies in a
sharp corner where it is easy to obtain a bridge sample, the
average radius of this region is abnormally large. However,
this region is not very difficult and is useless. Therefore,
this region is classified as normal rather than difficult.
Second, combining the guRatio, the buRatio and the average
radius, more regions can be classified as easy or difficult.
The region where average radius is beyond Q3 has a
relatively large average radius and as such, is likely to be a
difficult region. The guRatio and the buRatio of this region
are compared with the guRatio and the buRatio of the global
scenario. The region where the guRatio and the buRatio are
higher than the global guRatio and the global buRatio can be
classified as difficult. Similarly, the region where the
average radius is beyond Q1 and where the guRatio and the
buRatio are lower than the global guRatio and the global
buRatio can be classified as easy. The rest of the regions are
simply classified as normal. The above conditions and
results are summarized in Tab.2. According to Tab.2,
regions can be classified as easy, normal or difficult. A
region classification case is illustrated in Fig.8.

xgoal

xstart

Region 

Figure 7. Region construction. Uniform, Gaussian and bridge samples are
coloured blue, green and red, respectively. Obstacles are coloured grey. The
initial number of samples in each region k' is set to 6 in this figure.
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condition type

1 r .avgraius∈ 0,Q1−1.5 * IQR)

easy
2

r .avgraius∈ Q1−1.5 * IQR,Q1)

r .buRatio <buRatio
r .guRatio < guRatio

3

r .avgraius∈ Q1−1.5 * IQR,Q1)

r .buRatio > =buRatio
r .guRatio > = guRatio

normal4 r .avgraius∈ Q1,Q3)

5

r .avgraius∈ Q3,Q3 + 1.5 * IQR)

r .buRatio < =buRatio
r .guRatio < = guRatio

6

r .avgraius∈ Q3,Q3 + 1.5 * IQR)

r .buRatio >buRatio
r .guRatio > guRatio

difficult
7 r .avgraius∈ Q3 + 1.5 * IQR,Q3 + 3 * IQR)

8
r .avgraius∈ Q3 + 3 * IQR, + ∞)

r .center .type = start  or r .center .type = goal

9

r .avgraius∈ Q3 + 3 * IQR, + ∞)

r .center .type ≠ start
r .center .type ≠ goal

normal

Table 2. Region Classification

xgoal

xstart

difficult

easy

normal

normal

Figure 8. Region classification and boosting. Uniform, Gaussian and bridge
samples are coloured blue, green and red, respectively. Boosted samples are
coloured yellow. Obstacles are coloured grey.

Algorithm 4: Region Boosting
Input: region r, sample set V
Output: sample set V

1 if r is difficult then
2 calculate the distances from r.center to each sample in r and

add these distances to the queue q;
3 repeat
4 add a sample x in r using our hybrid sampling; add x

to the sample set V;
5 update r.bridge, r.gaussian, r.uni f orm, r.buRatio,

r.guRatio;
6 calculate the distance from r.center to x and add this

distance to the q;
7 choose k′ shortest distances from q and calculate the

median m of k′ shortest distances;
8 until m ≤ Q3;

In regions that have been classified as difficult, samples
need to be increased. As shown in Alg.4, we do not set a
fixed threshold for the number of increased samples.
Instead, the difficult region is boosted by adding samples
until the average radius of k ′ nearest samples of the region
centre is lower than Q3 (Alg.4, lines 3-8). The orange region
in Fig.8 is a difficult region that contains a narrow passage.
The number of samples in the narrow passage is dramati‐
cally increased through region boosting.

When region boosting is finished, the sample set V  is sent
to FMT* to find an initial feasible path. If FMT* cannot find
a feasible solution for the sample set V  and extra time is
available, more useful samples can be included in the
sample set V . This will be presented in the following
subsection.

3.4 Guided Hybrid Sampling

Like aFMT*, if FMT* cannot find a feasible path on the
sample set V  and time permits, our method doubles the
number of samples. Compared to aFMT*, the novelty of our
method lies in the use of guided hybrid sampling, rather
than a uniform sampling strategy. The guided hybrid
sampling makes good use of global scenario information
and local region information in order to add more useful
samples. The algorithm of our method is detailed in Alg.5.
First, if the scenario contains large open areas, which is
determined by the buRatio, the guided hybrid sampling will
adjust the proportion of uniform, Gaussian and bridge
samples in this sampling process according to the guRatio
(Alg.5, lines 4-11). Second, when new samples are added to
the sample set, we will calculate which regions the new
samples belong to (Alg.5, line 13). According to the region
type, if a new uniform sample is only in easy regions, it will
not be added to the sample set (Alg.5, lines 14-15). In
addition, when new samples are added to the sample set,
the corresponding regions’ information will be updated. If
a new sample is not inside any region, a new region based
on this sample will be constructed. Then, this new region
will be classified. If it is classified as difficult, it will be
boosted. When the guided hybrid sampling is complete, the
sample set V  will again be sent to FMT* to find a solution.

Double the number of samples using the guided hybrid
sampling method and apply FMT* until an initial feasible
solution is found or time runs out.

4. Experiments and Discussions

The proposed method is evaluated using six scenarios: 2D
bugtrap-hardest, 3D apartment, 3D abstract, 3D twistycool,
2D maze and 2D barriers, which are shown in Fig.11,
respectively. The first scenario is an extension of the
bugtrap in Open Motion Planning Library (OMPL 1.0.0)
[34], where the area for sampling is enlarged. The final five
scenarios are provided by OMPL. To investigate the
advantages of our method, the first four challenging
scenarios are adopted. In these scenarios, to arrive at the
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goal position, the robot has to pass a narrow passage, which
presents a significant challenge for FMT* and extended
methods. To investigate the performance of our method
under the scenarios without narrow passages, the final two
prototypical scenarios are also employed.

Algorithm 5: Guided Hybrid Sampling
Input: number of samples n0, sample set V
Output: sample set V

1 uCount, gCount, bCount = 0;
2 while the number of free samples is less than n0 do
3 x ← a random configuration generated by hybrid sampling;
4 if x.type = uni f orm then
5 if bCount/uCount ≥ guRatio or buRatio > threshold

then
6 add = true; uCount← uCount + 1;
7 else if x.type = gaussian then
8 if bCount/gCount ≥ 1 or buRatio > threshold then
9 add = true; gCount← gCount + 1;

10 else if x.type = bridge then
11 add = true; bCount← bCount + 1;
12 if add = ture then
13 calculate which regions the new sample x belongs to;
14 if x.type = uni f orm and the regions which x belongs to are

all easy then
15 reject this sample x; uCount← uCount− 1;
16 else
17 add x to sample set V;

(a) bugtrap-hardest (b) apartment

(c) abstract (d) twistycool

(e) maze (f) barriers

Figure 9. Benchmark scenarios. In (a) (b) (c) and (d), to arrive at
the goal position, the robot has to pass a narrow passage.

500 and the k′ in the region construction and the region
boosting was set to 10. We took the default values of
the Gaussian sampler parameters from OMPL and the
standard deviation was set to 10% of the maximum extent
of the C-space. The bridge test sampler was implemented
based on the Gaussian sampler and the standard deviation
parameter was equal to the Gaussian sampler. All results
were averaged over 100 runs and all methods run until an
initial feasible solution was found or time ran out.

We tested the f reeRatio and the buRatio in many different
scenarios of OMPL. As shown in Fig.10, the buRatio was
able to characterize whether configuration obstacles were
evenly distributed. For example, the bugtrap-hardest
(Fig.9(a)) had large open areas and as such, its buRatio was
close to zero. Obstacles were almost evenly distributed in
the maze (Fig.9(e)) and as such, its buRatio was relatively
large. According to our observations of these scenarios
and the results in Fig.10, we provide an empirical value
of 0.5 as the threshold in the guided hybrid sampling.
Where the buRatio is smaller than the threshold, we
believe that such a scenario contains large open areas and
the proportion of uniform, Gaussian and bridge samples
needs to be adjusted.

4.2. Self Comparisons

We tested the parameters of our method in Fig.11 and
show that our method is not sensitive to parameters.
Parameters were tested in the apartment scenario with 16
settings for two parameters, as well as other parameters in
default values. Two parameters are shown: 250 ≤ n0 ≤
2000, which is the initial number of samples; 5 ≤ k′ ≤ 80,
which is the initial number of samples in each region.
The vertical axis shows the success rate of our method in
finding an initial feasible solution within 20 seconds in the
apartment scenario. It can be estimated from Fig.11 that
a too-small or too-large initial number of samples had an
effect on the success rate of our method. The reasons for
this can be explained from two perspectives. First, the
results of region classification may not be accurate when
the initial number of samples is too small. Second, the
given time may not be enough for dealing with too many
samples. However, when the initial number of samples is
moderate, our method achieves better performance.
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Figure 10. The f reeRatio and the buRatio of different scenarios in
OMPL.
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Figure 11. The success rate of our method with different
parameter settings in the apartment scenario.

4.3. Comparing with State-of-the-art

For each scenario, we show three graphs. The first shows
the success rate of finding an initial feasible solution as
a function of time. The second shows the mean cost of
successful attempts as a function of time. The third shows
the harmonic mean cost as a function of time.
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Figure 9. Benchmark scenarios. In (a) (b) (c) and (d), to arrive at the goal
position, the robot has to pass a narrow passage.

We compared our method against aFMT* and RRT*, as
these two methods are state-of-the-art asymptotically
optimal planners. In addition, to test our modified locally
optimal one-step connection strategy of FMT* and compare
with other non-uniform sampling strategies, our method
was also compared with aFMT* with the modified locally
optimal one-step connection strategy (aFMT*+ymin),
aFMT* with a bridge test sampler (aFMT*+bridge test), as
well as with a combination of the two (aFMT*+bridge test
+ymin).

4.1 Experiment Settings

Simulations were run on a Linux operating system (Ubuntu
12.04) on a 3.1GHz Core i5 processor with 4GB of memory.
Our methods were implemented in OMPL and the imple‐
mentations of RRT*, FMT*, the uniform sampler and the
Gaussian sampler were taken from OMPL. The implemen‐
tation of RRT* was a k-nearest version, including delaying
collision checks, as well as pruning via branch and bound
and node rejection. We took the default values of RRT*
parameters from OMPL, a steering parameter of 3.5% of the
maximum extent of the C-space and a goal-bias probability
of 5%. The implementation of FMT* was a k-nearest version
and the tree was expanded in a cost-to-come+cost-to-go
space. We also took the default values of FMT* parameters
from OMPL and a radius multiplier of 1.1. The implemen‐
tation of aFMT* was based on FMT* and we sped up this
method by reusing both existing samples and connections
from previous iterations. The initial number of samples n0
in aFMT* was set to 500 and other parameters were
identical to FMT*. In our method, the initial number of
samples n0 was also set to 500 and the k ′ in the region
construction and the region boosting was set to 10. We took
the default values of the Gaussian sampler parameters from
OMPL and the standard deviation was set to 10% of the
maximum extent of the C-space. The bridge test sampler
was implemented based on the Gaussian sampler and the
standard deviation parameter was equal to the Gaussian
sampler. All results were averaged over 100 runs and all
methods run until an initial feasible solution was found or
time ran out.

We tested the freeRatio and the buRatio in many different
scenarios of OMPL. As shown in Fig.10, the buRatio was able
to characterize whether configuration obstacles were
evenly distributed. For example, the bugtrap-hardest (Fig.
9(a)) had large open areas and as such, its buRatio was close
to zero. Obstacles were almost evenly distributed in the
maze (Fig.9(e)) and as such, its buRatio was relatively large.
According to our observations of these scenarios and the
results in Fig.10, we provide an empirical value of 0.5 as the
threshold  in the guided hybrid sampling. Where the buRatio
is smaller than the threshold , we believe that such a scenario
contains large open areas and the proportion of uniform,
Gaussian and bridge samples needs to be adjusted.
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4.2 Self Comparisons

We tested the parameters of our method in Fig.11 and show
that our method is not sensitive to parameters. Parameters
were tested in the apartment scenario with 16 settings for
two parameters, as well as other parameters in default
values. Two parameters are shown: 250≤n0≤2000, which is
the initial number of samples; 5≤k ′≤80, which is the initial
number of samples in each region. The vertical axis shows
the success rate of our method in finding an initial feasible
solution within 20 seconds in the apartment scenario. It can
be estimated from Fig.11 that a too-small or too-large initial
number of samples had an effect on the success rate of our
method. The reasons for this can be explained from two
perspectives. First, the results of region classification may
not be accurate when the initial number of samples is too
small. Second, the given time may not be enough for
dealing with too many samples. However, when the initial
number of samples is moderate, our method achieves better
performance.
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Figure 10. The freeRatio and the buRatio of different scenarios in OMPL

4.3 Comparing with State-of-the-art Asymptotically Optimal
Planners

For each scenario, we show three graphs. The first shows
the success rate of finding an initial feasible solution as a
function of time. The second shows the mean cost of
successful attempts as a function of time. The third shows
the harmonic mean cost as a function of time.

It should be noted that the mean cost of successful attempts
may not be able to describe the real performance of
asymptotically optimal planners when the success rate is
relatively low. As shown in Fig.12(b), the mean cost
function is not monotonic, since it only calculates the cost
of successful attempts. For example, the mean cost of RRT*
increases from 9 to 12 seconds. It can be estimated that the
success rate of RRT* increases during this period of time,
while the cost of new solutions achieved by RRT* is larger
than before. Therefore, the harmonic mean cost, namely the
harmonic mean of cost, is also adopted to describe the

performance of asymptotically optimal planners. This has
two advantages over mean cost. First, since the harmonic
mean cost can deal with the infinite cost, it considers all
attempts rather than successful attempts only, which
delivers a closer indication of real performance. Second, to
some extent, the harmonic mean cost can reflect the success
rate of algorithms. In other words, it combines two main
measures of asymptotically optimal planners. If two
methods have the same success rate, the harmonic mean
cost only reflects the difference in terms of real cost.

4.3.1 Numerical Experiments under Challenging Scenarios with
Narrow Passages

Bugtrap-hardest: the challenging bugtrap problem is
proposed in [35]. To escape the bugtrap, the robot has to
pass a narrow opening, while the size of free space is
considerly larger than the size of narrow opening. Simula‐
tion results for this problem are depicted in Fig.12 and Tab.
3. Our method indicated a higher success rate than other
methods, achieving 93% in 20 seconds, while RRT* ach‐
ieved 30% and the methods with a bridge test sampler
remained at 0%. As the boundary nodes were always
selected for invalid extensions, RRT* was not considered
useful for this scenario. It is difficult to get a sample from a
bridge test sampler in large open areas and as such, aFMT*
+bridge and aFMT*+bridgetest+ymin were unable to find a
solution after 20 seconds. Although the success rates of
aFMT* and aFMT*+ymin were similar to our method at 20
seconds, Tab.3 shows that the average number of states for
our method were about 11% of the other two methods. The
reason for this is that the uniform sampler wasted many
samples in the large open areas of the bugtrap-hardest
scenario, while our method solved this problem by adjust‐
ing the proportion of three types of samples. Taking
advantage of FMT*, our method had a lower mean cost than
RRT* and reached the lowest harmonic mean cost.

Apartment: the particularly challenging apartment
scenario is highly cluttered with obstacles. As its freeRatio
is low, it is difficult to obtain a free sample. Even worse, the
goal position of this problem lies in a narrow corridor. Fig.
13 and Tab.3 present simulation results. Compared to other
methods, our method achieved significant improvement
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Figure 11. The success rate of our method with different parameter settings
in the apartment scenario
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Figure 12. Simulation results for bugtrap-hardest in 2D space.Figure 12. Simulation results for bugtrap-hardest in 2D space
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Figure 13. Simulation results for apartment in 3D space
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Figure 14. Simulation results for abstract in 3D space
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Figure 15. Simulation results for twistycool in 3D space
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on success rate over 20 seconds, i.e., 84% and 63% higher
than aFMT* and RRT*, respectively. This improvement can
be attributed to our region classification and boosting,
which can effectively identify and boost difficult regions,
and save a significant number of samples in the useless
regions. As this scenario is cluttered with obstacles, which
is suited for building bridges, aFMT*+bridge and aFMT*
+bridgetest+ymin also had higher success rates than
methods employing a uniform sampler. However, without
a boosting strategy, their success rates were still lower than
our method. Although the mean cost of our method was
somewhat higher than RRT*, we can easily make up this
difference by applying a post-processing method, e.g., a
short cut method [36]. Additionally, as shown in Tab.3, our
method required roughly 35% less states than RRT*. Again,
our method reached the lowest harmonic mean cost.

Abstract: the main difficulty of the abstract scenario is that
the start position of the robot is quite restricted. Moving out
of the horizontal cylinder is difficult and requires several
attempts. The plots for this scenario, given in Fig.14, show
similar conditions to those found for the apartment
scenario. Again, our method achieved the highest success
rate over 20 seconds, i.e., 94% and 46% higher than aFMT*
and RRT*, respectively. In this scenario, RRT*, aFMT*
+bridge and aFMT*+bridgetest+ymin performed much
better than methods employing a uniform sampler. The
reasons for this can be explained as follows. First, it is much
easier for RRT* to explore a narrow passage from the inside
to the outside than to find the entrance to a narrow passage.
Second, there are relatively open areas in this scenario,
while more samples focus on the narrow passages by using
a bridge test sampler. Moreover, the methods applied in the
modified locally optimal one-step connection strategy
(aFMT+ymin, aFMT+bridgetest+ymin) had a higher
success rate than methods without this strategy (aFMT,
aFMT+bridgetest). Fig.14(b) shows that our method had a
lower cost than RRT*. As expected, our method had the
lowest harmonic mean cost.

Twistycool: twistycool contains a wall with a small hole
and useless open areas, and the difficulty of this scenario
arises from the small hole that the robot must move
through. Results in Fig.15(a) and Tab.3 show few differen‐
ces from those in the previous three scenarios. First, the
methods with a bridge test sampler (aFMT*+bridgetest,

aFMT*+bridgetest+ymin) had a higher success rate than
our method over 20 seconds and the states they needed
were less than for our method. Most of the samples
achieved by the bridge test sampler were adjacent to the
wall, which was sufficient for FMT* to find a path through
the hole. In other words, the bridge test sampler is partic‐
ularly well-suited to this scenario, while our method
wasted some samples in open areas. Even so, our method
still had a higher success rate and fewer states than RRT*.
Second, the mean cost of our method was lower than for
methods with a bridge test sampler and higher than RRT*.
Therefore, the methods with a bridge test sampler had the
lowest harmonic mean cost over 12 seconds, while our
method had the lowest harmonic mean cost after 12
seconds.

Some methods can achieve a higher success rate over a
shorter period of time in these challenging scenarios, e.g.,
kinodynamic motion planning by interior-exterior cell
exploration (KPIECE) [37] in the abstract scenario and RRT-
connect [38] in the apartment scenario. However, since path
quality is not considered by these methods, comparisons
were not made to them.

4.3.2 Numerical Experiments under Scenarios without Narrow
Passages

Maze: navigating a maze is a prototypical problem for path
planners. Simulation results for this problem are shown in
Fig.16 and Tab.3. Since there were no narrow passages in
this scenario, our method and other aFMT* methods had
similar success rates, all higher than RRT*. Although the
success rates of all the methods rose rapidly to 100%, the
methods with a bridge test sampler were slightly slower
than methods employing a uniform sampler and our
method. The reason for this is that a uniform sampler
performs fewer collision checks per sample than a bridge
test sampler. Shown in Tab.3, the number of states for our
method was higher than for other aFMT* methods, which
can be explained as having resulted from our boosting
strategy. Moreover, as our method employed more states,
we had a lower mean cost and a lower harmonic mean cost
than other aFMT* methods.

Barriers: barriers present another prototypical scenario for
path planners. The results for this scenario, given in Fig.
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Figure 16. Simulation results for Maze in 2D space
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17, are similar to those of the maze method. Again, our
method and other aFMT* methods reached a success rate
of 100% faster than RRT*. Our method had the lowest mean
cost and the lowest harmonic mean cost.

The maximum, minimum and average number of states,
iterations, collision checks, as well as the time utilized by

each method to find an initial feasible solution in a given
time (20s in the first four scenarios, 5s in the final two
scenarios), are presented in Tab.3. The results show that our
method performed well in all six scenarios, particularly in
the challenging scenarios with narrow passages. First, the
superiority of our method is revealed both in its higher

scenario method
iteration state collision check time(s) success

ratemin max avg min max avg min max avg min max avg

bugtrap hardest

aFMT* 6 10 9.29 16002 256002 184550 3559 18267 13496 1.51 18.81 12.49 88%

aFMT* + bridge test - - - - - - - - - - - - 0%

aFMT* + ymin 2 10 8.63 1002 256002 153900 1183 19515 12807 0.26 19.16 11.09 92%

aFMT* + bridge test + ymin - - - - - - - - - - - - 0%

RRT* 3014 210649 147540 2005 4042 3037 6994 220176 154930 1 19 13.40 30%

Our method 1 7 5.43 572 54368 21702 939 13239 6869 0.13 20.07 7.88 93%

apartment

aFMT* 2 3 2.67 1002 2002 1669 4364 7516 6412 7.01 13.86 11.34 3%

aFMT* + bridge test 1 1 1 502 502 502 4217 6319 5310 9.05 11.51 10.26 14%

aFMT* + ymin 1 3 2.64 502 2002 1716 4025 16197 12520 2.97 17.34 12.99 14%

aFMT* + bridge test + ymin 1 1 1 502 502 502 16197 19684 18557 16.38 19.96 18.73 21%

RRT* 10287 53714 31014 718 3387 2032 11911 59849 34814 3 15 9 24%

Our method 1 2 1.57 657 1965 1314 9302 53125 27457 3.74 18.65 10.30 87%

abstract

aFMT* 4 6 5.25 4002 16002 11002 7647 9744 8590 9.21 20.02 15.58 4%

aFMT* + bridge test 1 3 2.78 502 2002 1808 3221 13178 9674 2.69 13.30 10.55 18%

aFMT* + ymin 5 6 5.75 8002 16002 14002 13229 15717 14817 12.28 18.81 17.05 4%

aFMT* + bridge test + ymin 1 3 2.74 502 2002 1773 8267 34382 24100 4.04 17.64 13.23 35%

RRT* 10893 231394 67195 1298 8129 4646 15598 235942 77440 3 20 11.65 52%

Our method 1 4 3.07 660 6906 3440 9544 54050 30721 1.97 17.82 8.91 98%

twistycool

aFMT* 2 5 4.07 1002 8002 4817 7473 23861 19452 2.85 15.78 11.21 27%

aFMT* + bridge test 1 3 1.26 502 2002 638 505 17786 5962 2.24 14.7 4.73 99%

aFMT* + ymin 2 5 4.06 1002 8002 4752 21687 51424 41217 5.26 19.95 13.97 32%

aFMT* + bridge test + ymin 1 2 1.06 502 1002 532 963 51789 14762 2.29 14.85 5.42 100%

RRT* 1097 43305 24175 1120 12465 7223 3540 61188 34707 1 20 10.66 70%

Our method 1 4 2.61 524 14206 2768 7514 63742 39517 1.17 19.12 8.11 99%

maze

aFMT* 1 2 1.08 502 1002 542 2677 7429 3544 0.66 1.89 0.88 100%

aFMT* + bridge test 1 2 1 502 1002 507 2907 7506 3635 0.84 2.22 1.02 100%

aFMT* + ymin 1 2 1.01 502 1002 507 3712 9730 4304 0.83 2.43 1.00 100%

aFMT* + bridge test + ymin 1 1 1 502 502 502 3976 5259 4551 1.02 1.43 1.21 100%

RRT* 1901 15373 8146 245 3092 1598 3574 27436 16000 0.5 5 2.88 92%

Our method 1 1 1 590 805 685 4566 6433 5441 0.64 0.87 0.75 100%

barrier

aFMT* 1 4 1.54 502 4002 807 1207 10710 2706 0.33 3.90 0.79 100%

aFMT* + bridge test 1 2 1.14 502 1002 572 1760 5557 2814 0.69 2.10 1 100%

aFMT* + ymin 1 3 1.25 502 2002 637 1380 6774 2866 0.37 2.06 0.72 100%

aFMT* + bridge test + ymin 1 1 1 502 502 502 2543 4311 3629 0.81 1.22 1.06 100%

RRT* 5700 28114 15382 248 2100 926 7854 35764 19602 0.75 4 1.92 98%

Our method 1 2 1.01 571 1478 689 2135 4594 3563 0.37 0.93 0.57 100%

Table 3. Simulation Results
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success rate and lower harmonic mean cost. Second,
compared to other non-uniform sampling strategies and
region-based methods, our method allows for the automat‐
ic tuning of parameters and is scenario-independent.

5. Conclusions and Future Work

In this paper, a region-specific hybrid sampling method is
presented, which significantly enhances the performance
of FMT* in the scenarios containing narrow passages.
Unlike related region-based sampling methods, the
configuration space is globally characterized by the
proportion of uniform, Gaussian and bridge samples, and
then locally captured by regions with a different radius.
Our method attempts to classify regions by integrating
global scenario information and local region information,
and increase the number of samples in difficult regions.
Where our method is unable to find a solution for the initial
sample set, more samples – which are biased to difficult
regions – will be added to the previous sample set. Our
method outperformed other methods, since it captures rich
global scenario and local region information in a statistical
manner and adjusts parameters automatically according to
this information. Experimental results pertaining to six
scenarios validated the efficiency of our method.

Despite our method working well in simulations, there
remain approaches for enhancing it further. For example,
information achieved from FMT* is not employed in our
method. It may be possible to use more information for
updating regions into having a new status, thus increasing
the efficiency of our method.
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