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Abstract

RGB-infrared (IR) person re-identification is a
challenging task due to the large modality gap be-
tween RGB and IR images. Many existing meth-
ods bridge the modality gap by style conversion, re-
quiring high-similarity images exchanged by com-
plex CNN structures, like GAN. In this paper,
we propose a highly compact modality-aware style
adaptation (MSA) framework, which aims to ex-
plore more potential relations between RGB and
IR modalities by introducing new related modali-
ties. Therefore, the attention is shifted from bridg-
ing to filling the modality gap with no requirement
on high-quality generated images. To this end, we
firstly propose a concise feature-free image gen-
eration structure to adapt the original modalities
to two new styles that are compatible with both
inputs by patch-based pixel redistribution. Sec-
ondly, we devise two image style quantification
metrics to discriminate styles in image space us-
ing luminance and contrast. Thirdly, we design two
image-level losses based on the quantified results
to guide the style adaptation during an end-to-end
four-modality collaborative learning process. Ex-
perimental results on two datasets SYSU-MM01
and RegDB show that MSA achieves significant
improvements with little extra computation cost
and outperforms the state-of-the-art methods.

1 Introduction
Person re-identification (Re-ID) aims to retrieve a target per-
son across disjoint camera views [Ye et al., 2020c; Ye et al.,
2020a]. Given probe images of a person-of-interest, Re-ID
searches the gallery set to match images with the same iden-
tity. However, Re-ID based on RGB cameras usually fails
to capture valid appearance information under poor lighting
conditions. With the introduction of infrared cameras, the
cross-modality RGB-Infrared (RGB-IR) person Re-ID is pro-
posed to leverage the discrepancy of modalities originated
from different imaging processes of RGB and IR cameras,
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Figure 1: Illustration of the motivation of MSA. Different color
blocks mean different styles. (a) The networks need to generate
high-quality fake images to stride the large modality gap. (b) The
MSA alleviates the modality gap from the view of increasing the in-
put style diversity, which promotes the exploration of style-invariant
features. So it faces a smaller gap of image generation without de-
pendence on high-similarity generated images.

where the probe consists of RGB images and the gallery con-
sists of IR images or vice versa.

One critical challenge for RGB-IR person Re-ID is the
large cross-modality gap between RGB and IR images. To
reduce the modality gap, existing methods for RGB-IR Re-ID
can be generally divided into two types. Some methods work
in the feature space by designing some modality-specific and
modality-shared embedding networks or classification layers
[Dai et al., 2018; Ye et al., 2019b; Feng et al., 2019]. How-
ever, these methods usually ignore the large gap existed in
image space. The other methods apply GAN-based networks
to achieve dual image style conversion while bridging the two
modalities in image space [Wang et al., 2019a; Wang et al.,
2019b], using high-similarity images exchanged with com-
plex image generation structures, as shown in Fig. 1a.

To alleviate the modality gap, we propose a modality-
aware style adaptation (MSA) framework to facilitate the
mining of potential relations between RGB and IR modali-
ties by introducing new related modalities. Different from
existing methods, MSA enlightens image-to-image commu-
nication between RGB and IR modalities and adopts the
knowledge to generate new modalities that are compatible
with both RGB and IR modalities. As illustrated in Fig. 1b,
MSA adapts RGB and IR images to new R2I and I2R styles
in parallel under the guidance from the counterpart, filling
the large modality gap utilizing connections among the four
modalities. Firstly, a compact image generation framework
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Figure 2: (a) The proposed MSA framework. In image sapce, the image style adaptation module (ISA) takes Xrgb and Xir as input and
outputsXr2i andXi2r under the constraint of the style similarity module (SSC), which is the combination of image style quantification (ISQ)
and style similarity losses (SSL+ and SSL). In feature space, images of the four modalities are fed into a common embedding network, then
two losses are applied to the output embeddings. (b) ISA module with details in Section 3.1. (c) SSC module with details in Section 3.2. The
network is trained end-to-end. (Please view in color.)

is designed without deep CNN structures since MSA does
not require high-similarity generated images. In detail, MSA
shuffles knowledge of patches in an original image and re-
constructs constrained by two image-level losses, which are
calculated by two devised image style quantification metrics
from global and patch views. Subsequently, the two orig-
inal and two generated modalities are fed into a common
embedding network and features of the four modalities are
constrained by identification loss and triplet loss. Above all,
the trainable image generation structure and feature embed-
ding network are optimized simultaneously by two image-
level losses and two feature-level losses during an end-to-end
training. The main contributions of this work are as follows:

• We propose a compact modality-aware style adaptation
(MSA) framework, which introduces two new related
modalities to help explore modality-invariant features.

• We design two image-level losses and combine them
with feature-level losses to form a dual-space (image and
feature space) total objective function.

• MSA outperforms the state-of-the-arts on two publicly
available datasets. Specially, over 6% improvements of
rank-1 and mAP on the RegDB dataset.

2 Related Works
2.1 RGB-Infrared Person Re-identification
For RGB-IR Re-ID, various methods are proposed to reduce
the modality gap, and most of them can be divided into two
types. The first type contains methods focusing on the feature
space. For instance, [Wu et al., 2017] researched three kinds
of frameworks and used zero-padding to learn the common
space for two different modalities. [Dai et al., 2018] designed
a cross-modality generative adversarial network (cmGAN) to
reduce the modality gap by learning a highly integrated fea-
ture space. [Ye et al., 2019a] designed two separate identity
classifiers and a modality-sharable classifier to learn the dis-
criminative information of different modalities. The second
type aims at image generation, which reduces the modality

gap by converting images from RGB modality to IR style or
vice versa, while keeping the identity information. [Wang
et al., 2019b] reduced the image-level discrepancy through a
dual image transformation. [Wang et al., 2019a] generated
fake IR images to learn more discriminative information of
identities from different modalities.

Methods focusing on feature space are usually limited
by the large image-level gap. However, existing image-
level methods usually bridge the two modalities through deep
CNN-based style conversion with a lot of extra parameters.
MSA works in image space and design a compact two-layer
image generation structure.

2.2 Image Similarity Metric
The GAN-based Re-ID methods use the feature–level dis-
criminator to constrain the similarity of images. However,
some image-level metrics comparing the images pixel by
pixel for evaluation are still effective. For instance, [Wang et
al., 2004] proposed a structural similarity (SSIM) to compare
two images from the view of luminance, contrast and struc-
ture. More generally, the peak signal-to-noise ratio (PSNR),
which measures the image similarity by calculating the mean
square error (MSE) of two images and the image-level L1
loss are widely used to measure the similarity of two im-
ages [Zhang et al., 2019; Liu et al., 2020]. Hardly existing
RGB-IR Re-ID methods focus on style conversion in image
space, therefore ignore to construct image-level distance met-
rics for style discrimination. In MSA, we fill this vacancy by
designing two style similarity metrics used in the image space
and further introduce two image-level losses.

3 The Proposed Method
MSA achieves style adaptation by reconstructing the source
images while siphoning off knowledge from the target style,
where the results are compatible with both source and target
modalities. Based on that, we denote a triplet of images with
form {Xs, Xa, Xt} referring to images from the source, gen-
erated, and target modalities during style adaptation. And it
can be adapted as {Xrgb, Xr2i, Xir} or {Xir, Xi2r, Xrgb} in
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Figure 3: The process of ISA. It contains a convolution subprocess
and a deconvolution subprocess to achieve pixel redistribution. Red
arrows represent the direction of information flow.

MSA. The proposed framework is shown in Fig. 2a. In im-
age space, MSA aims to generate two new modalities through
dual style adaptation. In feature space, it focuses more on
constructing a high integrated feature space where the cross-
modality variations are alleviated.

3.1 Image Style Adaptation
The image style adaptation (ISA) module achieves the image
reconstruction stage in style adaptation and designs a struc-
ture with concise operations. As shown in Fig. 3, firstly,
based on the patch-level receptive field, the convolutional
layer combines local pixel information of the input image into
one pixel of the intermediate image. Secondly, the deconvo-
lutional layer takes the intermediate image as input and redis-
tributes the pixels with a learnable form in the output image.
During training, two ISA modules are applied with the same
structure but optimized separately. Above all, the process of
ISA is defined as:

Xa = D(C(Xs)) (1)

where C and D represent the convolution and deconvolu-
tion operations separately. Xs and Xa confirm the definition
above. What worth noticed is there is no padding operation
existed in ISA to avoid the loss of information during decon-
volution. Moreover, the kernel sizes of C and D are both set
as 3 × 3, with neglected influence on the image identity (the
label) due to the small covering range.

3.2 Style Similarity Constraint
The style similarity constraint (SSC) module siphons off
knowledge from the target style in style adaptation. As
shown in Fig. 2c, SSC consists of an image style quantifi-
cation (ISQ) block and two style similarity losses (SSL+ and
SSL). Specifically, it models the relations among modalities
by discriminating the source, generated and target styles in
image space (ISQ) and guides the style adaptation by calcu-
lating image-level style distances of them (SSL+ and SSL).

Image style quantification. Firstly, we discriminate differ-
ent styles by quantifying image style. Considering the patch-
based ISA module, the image style quantification (ISQ) mod-
ule is also proposed from a patch view using patch luminance
and contrast of an image, which are described by the mean
value µ and standard deviation σ [Wang et al., 2004]. We de-
note an image x ∈ RC×H×W , where C represents the chan-
nel dimension, H and W represent the image size. As shown
in Fig. 4, an N × N window conforming to the Gaussian

padding

sliding

sliding output

Matrix of μ Matrix of σ

Figure 4: The process of ISQ. Here the values surrounded by the
red circles in the output matrixes are calculated based on the pixels
surrounded by the red circle in the initial image.

distribution is designed to separately calculate the µ and σ
within the sliding window in each step. Subsequently, results
in each step are concatenated keeping the topological rela-
tionship invariant. Based on that, the quantified image style
ISx ∈ RC×H×W contains two parallel outputs:

ISx = {ISxµ
, ISxσ

}

= {d
W∑
i=1

H∑
j=1

φ(xi,j)c, d
W∑
i=1

H∑
j=1

√
φ(x2i,j)c}

(2)

where
φ(xi,j) = G� Γ(xi,j) (3)

here, G represents a Gaussian filter and � represents the
element-wise product of matrixes. Γ(·) is a truncation func-
tion which takes the input pixel as center and cuts out a new
N ×N image. x2 ∈ RC×H×W is calculated by x � x. And
dc is the concatenation operation. Especially, the ISx is cal-
culated parallel using Eq. 2 in each channel, and that of the
whole image is the concatenation of C channels.
Style similarity loss. Secondly, after discriminating differ-
ent styles using ISQ, two style similarity losses are designed
to restrict the distances between the generated style and the
source (target) style during style adaptation. As illustrated in
Fig. 2c, the style distances between {Xt, Xa} and {Xs, Xa}
are calculated differently. For the first pair, LSSL is defined
using the MSE loss:

LSSL =
1

C
(

C∑
c=1

∆ISc
xµ

+
C∑

c=1

∆ISc
xσ

) (4)

where
∆ISxµ

= (IStµ − ISaµ
)2 (5)

and
∆ISxσ

= IStσ
2 + ISaσ

2 − 2 ∗ IS(t�a)σ (6)
here, c is the index of channel. Then, for {Xs, Xa}, which
are highly similar to each other in terms of content, a more
powerful global view constraint may work better [Zhang et
al., 2019]. Directly, the style of images is affected by the
value of each pixel, thus a reinforced global-view image style
IS+

x ∈ RC×H×W of image x is quantified as:
IS+

x = x (7)
and corresponding LSSL+ is defined as:

LSSL+ = ||IS+
s − IS+

a ||1 (8)
where ||·|| represents the l1-norm used to further sharpen
the generated Xa compared with MSE [Zhang et al., 2019].
More details about the function of LSSL+ and LSSL are dis-
cussed in Section 4.4.
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Overall image-level loss. The style adaptation is mainly
achieved in image space using the aforementioned modules.
To propagate knowledge from both RGB and IR modalities
to the new modalities in image space, MSA restricts the style
distance of {Xt, Xa} and {Xs, Xa} simultaneously. Firstly,
LSSL is used to reduce the style distance between {Xt, Xa}
to force Xa to stay more closer to Xt in style. However, the
effect of LSSL is limited by the different content information
of {Xt, Xa}. Moreover, due to the simple structure of ISA,
the generated Xa is actually highly similar to Xs, which puts
MSA in a dilemma where the similarity between {Xs, Xa}
is too high while that between {Xt, Xa} is not high enough.
Accordingly, the more powerful LSSL+ is introduced to en-
large the style distance between {Xs, Xa} on the one hand,
and assist LSSL to close {Xt, Xa} on the other hand. As a
result, the overall image-level loss is defined as:

Limg = αLSSL − βLSSL+ (9)

3.3 Feature Representation Learning
We design a common embedding network F for the four
modalities as shown in Fig. 2a, to ensure that knowledge from
one specific style can be broadcast to others through the back-
propagation during end-to-end training. And the output em-
beddings are constrained by two feature-level losses.

3.4 Feature-level Loss
Firstly, identity (ID) classification loss [Liu et al., 2018] is
applied by optimizing the cross-entropy loss between labels
and predicted possibilities. Secondly, an improved multi-
modality triplet loss is developed as shown in Fig. 2c. Com-
pared with the conventional one, it ignores the modality at-
tribute of images and only leaves restrictions on the same
identity for (a, p) and different identities for (a, n). More-
over, it can handles features from four modalities simultane-
ously. Above all, the multi-modality triplet loss with hard
sample mining is defined as:

Lmmtri = [maxD[F(xima),F(ximp)]−
minD(F(xima),F(xjmn)) + λ]+,

(10)

where λ is a margin parameter and [z]+ = max(z, 0). D(·) is
the Euclidean distance. (a, p, n) = (xima, x

i
mp, x

j
mn), where

i,j are unequal identities of persons. (ma,mp,mn) are cor-
responding modalities of the anchor and its hard samples, al-
lowing any combination of modalities.

3.5 Multi-modality Collaborative Learning
The aforementioned modules are integrated by a multi-
modality collaborative learning strategy and optimized by
both image-level and feature-level losses. The overall loss
function is formulated as:

Ltotal = Limg + γLmmtri + Lid, (11)

Algorithm 1 shows the overall training process of MSA. In
conclusion, the trainable ISA is introduced to help search two
’new styles’, with which the feature embedding network is
optimal. Therefore, end-to-end training is necessary and it
enables stronger losses from image and feature spaces.

Algorithm 1 Multi-modality collaborative learning of MSA
Input: RGB images:Xrgb, IR images: Xir

Parameter: α, β, γ
Output: Configurations of MSA

1: Initialize the parameters of F , D and C
2: for each xrgb, xir do
3: Generate xr2i, xi2r using Eq. (1)
4: for each triplet of {xrgb, xr2i, xir} do
5: Calculate LSSL1 , LSSL+

1
using Eq. (4), (8).

6: end for
7: for each triplet of {xir, xi2r, xrgb} do
8: Calculate LSSL2 , LSSL+

2
using Eq. (4), (8).

9: end for
10: Limg = α(LSSL1

+ LSSL2
)− β(LSSL+

1
+ LSSL+

2
)

11: for each {xrgb, xir, xr2i, xi2r} do
12: Calculte F(rgb), F(ir), F(r2i), F(i2r)
13: Calculte Lid

14: Calculte Lmmtri using Eq. (10).
15: end for
16: Ltotal = Limg + γLmmtri + Lid

17: end for

4 Experiments
4.1 Datasets and Settings
Datasets. (1) SYSU-MM01 [Wu et al., 2017] is a large-
scale and challenging dataset, containing 491 identities with
30,071 RGB images and 15,792 IR images. Among them,
395 persons with 22,580 RGB images and 11,909 IR images
are divided into the training set, and 96 persons are divided
into the testing set. During testing, we apply the more chal-
lenging single-shot mode. (2) RegDB [Nguyen et al., 2017]
contains 412 identities, which has 10 RGB images and 10
thermal images. The dataset is randomly divided into two
halves, training and testing set following [Ye et al., 2020c].
During testing, we adopt the Visible2Thermal mode which
takes the RGB images as probe and IR images as gallery.

Implementation details. The ResNet-50 [He et al., 2016]
with pre-trained parameters on ImageNet [Krizhevsky et al.,
2012] is taken as our backbone, where the stride of the last
convolutional layer is changed to one. During training, we
randomly select six identities with four RGB images and four
IR images sampled for each identity. We also adopt the ran-
dom erasing [Lu et al., 2020] for data augmentation. The
Adam optimizer is used to guide the training process in 60
epochs. The λ in Lmmtri is set to 0.5. And the trade-off
hyperparameters α, β and γ are set to 1:1:1 and 13:10:7 sepa-
rately on SYSU-MM01 and RegDB datasets. During testing,
only the RGB and IR images are taken as input of the feature
embedding network.

4.2 Comparison with State-of-the-Art Methods
The proposed method is compared with the state-of-the-arts
on two datasets, including Zero-Padding [Wu et al., 2017],
HCML [Ye et al., 2018], cmGAN [Dai et al., 2018], D-
HSME [Hao et al., 2019], D2RL [Wang et al., 2019b],
AlignGAN [Wang et al., 2019a], AT [Ye et al., 2020a], Hi-
CMD [Choi et al., 2020], JSIA [Wang et al., 2020], XIV [Li
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Method r = 1 r = 10 r = 20 mAP
Zero-Padding (ICCV17) 17.75 34.21 44.35 18.90
HCML (AAAI18) 24.44 47.53 56.78 20.08
D2RL (CVPR19) 43.40 66.10 76.30 44.10
D-HSME (AAAI19) 50.85 73.36 81.66 47.00
AlignGAN (ICCV19) 57.90 - - 53.60
XIV (AAAI20) 62.21 83.13 91.72 60.18
AT (TIP20) 69.60 - - 69.84
Hi-CMD (CVPR20) 70.93 86.39 - 66.04
cm-SSFT (CVPR20) 72.30 - - 72.90
SIM (IJCAI20) 74.47 - - 75.29
Ours 84.86 92.75 95.11 82.16

Table 1: Comparison results(%) at Rank r with the state-of-the-art
cross-modality Re-ID methods on the RegDB dataset.

Method All-search Indoor-search
r = 1 mAP r = 1 mAP

Zero-Padding (ICCV17) 14.8 15.95 20.58 26.92
HCML (AAAI18) 14.32 16.16 24.52 30.08
D-HSME (AAAI19) 20.68 23.12 - -
cmGAN (IJCAI18) 26.97 27.8 31.63 42.19
D2RL (CVPR19) 28.9 29.20 - -
AlignGAN (ICCV19) 42.4 40.7 45.9 54.3
Hi-CMD (CVPR20) 34.94 35.94 - -
JSIA (AAAI20) 38.10 36.9 43.8 52.9
XIV (AAAI20) 49.92 50.73 - -
cm-SSFT (CVPR20) 61.60 63.20 70.50 72.60
Ours 63.13 59.22 67.18 72.74

Table 2: Comparison results(%) at Rank r with the state-of-the-art
cross-modality Re-ID methods on the SYSU-MM01 dataset.

et al., 2020], DDAG [Ye et al., 2020b], SIM [Jia et al., 2020]
and cm-SSFT[Lu et al., 2020]. Table 1 and Table 2 show the
results over the RegDB and SYSU-MM01 datasets.

With a compact model, MSA outperforms the SOTA by
10.3% and 6.9% in terms of rank 1 and mAP on the RegDB
dataset. On the SYSU-MM01 dataset, we reach the lead-
ing level from the above view, but outperform the SOTA
in rank 10 and rank 20 accuracies which are not listed in
the table, with improvements of 3.76% and 3.08% under
all-search mode and 1.69% and 1.51% under indoor-search
mode. Moreover, Compared with methods concerning the
generation of new images, MSA does not rely on GAN-based
components [Wang et al., 2019a; Wang et al., 2019b] and
achieves not only channel-wise [Li et al., 2020] but also pixel-
wise image reconstruction. In addition, we align the settings
with AGW [Ye et al., 2020c] and DDAG [Ye et al., 2020b]
for a fair comparison as in Table 3. Results show that MSA is
still effective without the improvement of backbone, data and
network augmentation.

4.3 Ablation Study
Extensive ablation experiments are set to evaluate each com-
ponent of MSA as shown in Table 4. To ensure the robust-
ness of results, all experiments are performed using two back-
bones. Settings for each group are: 1) B: Baseline model

Method All-search Indoor-search
r = 1 mAP r = 1 mAP

AGW (TPAMI21) 47.50 47.65 54.17 62.97
DDAG (ECCV20) 54.75 53.02 61.02 67.98
Ours 55.50 52.57 61.19 68.15

Table 3: Comparison with AGW and DDAG using the same back-
bone, data and network augmentation on the SYSU-MM01 dataset.

Method Modality ResNet-50 DenseNet-121
R2I I2R r = 1 mAP r = 1 mAP

B × × 42.83 41.97 31.96 30.02
B+ISA X × 60.85 57.71 50.02 48.04

× X 59.17 57.19 48.55 46.99
X X 62.08 58.80 51.91 49.80

B+ISA+SSC X × 61.13 58.13 50.89 47.80
× X 60.27 58.02 49.72 47.72

MSA X X 63.13 59.22 54.13 52.03

Table 4: Ablation study on the large-scale SYSU-MM01 dataset un-
der the all-search mode.

trained with Lid and Lmmtri of original RGB and IR modal-
ities like [Ye et al., 2020c]. 2) B + ISA: Model trained with
Lid and Lmmtri of at least three modalities, which is opti-
mized only by feature-level losses. 3) B + ISA + SSC: Model
trained with Ltotal of three modalities. 4) MSA: Model
trained with Ltotal of four modalities.

Evaluation of R2I and I2R (ISA module). As shown in
Table 4, the baseline does not perform well with the origi-
nal modalities due to the large modality gap. MSA boosts
the performance by introducing two new modalities, hence
we evaluate if either of the R2I and I2R modalities works
by comparing the 2nd group with the baseline. Results sup-
port the effectiveness of both new modalities generated by the
designed ISA module and further verify the positive signifi-
cance of generating compatible modalities with new styles for
RGB-IR Re-ID. Besides, more new modalities perform better
with stronger promotion to explore potential information.

Evaluation of SSC. We evaluate the designed image-level
losses using experiments with the same option of modalities
in the last three groups. Results demonstrate SSC compen-
sates for the limitation of ISA we mentioned in Section 3.2
and benefits to exploit more related information in image
space. However, another observation is the improvement
seems slim with only the R2I or I2R modality. One reason-
able analysis is there are fewer parameters (fewer ISA mod-
ules) to optimize when only one new modality is generated,
which limits the effect of SSC.

Evaluation of SSL and SSL+. In this paper, we propose
two different image quantification metrics along with two
losses separately for {Xt, Xa} and {Xs, Xa}. To research
how the two losses work with different pairs of images, we
evaluate LSSL and LSSL+ in detail as shown in Table 5. Ac-
tually, performances of different options are almost the same
on the RegDB dataset but vary on the larger and more chal-
lenging SYSU-MM01 dataset. Results show that both SSL
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Index Xs–Xa Xt–Xa r = 1 mAP
1 LSSL LSSL 58.88 56.04
2 LSSL+ LSSL+ 59.98 57.25
3 LSSL+ × 55.34 52.22
4 × LSSL 54.75 52.46
5 (MSA) LSSL+ LSSL 63.13 59.22

Table 5: Evaluation of LSSL and LSSL+ on SYSU-MM01 dataset
under all-search mode.

SYSU-MM01 dataset RegDB dataset

IR
images

I2R
images

R2I
images

RGB
images

Figure 5: Visualization of Xr2i and Xi2r images on two datasets.

and SSL+ are valid to guide the style adaptation though SSL+

provides a more powerful constraint. Moreover, SSL fits
{Xt, Xa} better due to the content differences between them,
which weaken the pixel-based SSL+ designed in a global
view as described in Section 3.2. In a word, the patch-view
SSL fits images with large content difference and the SSL+ is
more suitable for images with the same content information
to strengthen the constraint from a global view.

4.4 Discussions
Image-level visualization. In this part, we show images of
the genearted R2I and I2R modalities. As shown in Fig. 5,
they inherit content information from source images, mean-
while the luminance, contrast as well as the ’tone’ of color are
changed to a new form. Specially, the I2R images are more
colorful than the source IR images, profiting from the knowl-
edge siphoned off from RGB images by the designed SSC
module. Moreover, although they look not perfect enough,
the improvements in Section 4.2 support our initial motiva-
tion: the high-similarity fake images are not necessary.

Feature-level visualization. One key point of MSA is we
achieve the style adaptation throughout in image space. To
explore how the image-level operations affect the feature
space after a deep CNN backbone, we visualize the feature
space using t-SNE [Maaten and Hinton, 2008] as shown in
Fig. 6. Compared with the baseline, MSA introduces R2I
and I2R, and features from initial RGB and IR modalities
are clustered mainly based on identity. In Fig. 6b, the gen-
erated Xa and its corresponding Xs are almost overlapped
because of the simple structure of ISA. In Fig. 6c, Xa can
be distinguished from Xs as shown in the dashed boxes and
can extract more potential information about Xs. Accord-
ingly, the feature space is redistributed due to the addition of
new modalities, during which more potential connections and

(b) : ISA (c) : ISA+ SSC

RGB modality
IR modality

R2I modality
I2R modality

different identities

(a) : Baseline

Figure 6: Visualization of feature space. (a) Results of the baseline
model with two initial modalities. (b) Results of model trained with
ISA. (c) Results of model trained with ISA and SSC. With SSC, Xa

seems more independent from Xs. (Please view in color.)

Figure 7: Performances of MSA with respect to different propor-
tions of α: β: γ on RegDB dataset.

differences between RGB and IR modalities are explored be-
cause of the similarity among the four modalities. As a result,
the variations between RGB and IR modalities are effectively
reduced in feature space.

Parameters analysis. During training, three key parame-
ters α, β and γ in Ltotal will guide the optimization of the
whole network. Fig. 7 shows the performances of MSA when
the three parameters are set as different values. Experiments
show that MSA performs optimally when the proportions of
them are 13:10:7 on the RegDB dataset.

Model analysis. MSA aims to achieve a highly compact
framework with no need for high-quality generated images.
To this end, we evaluate the processing FLOPs and model pa-
rameters of MSA. For a 288× 144 image, the FLOPs of MSA
are 5.1689G, only 0.0072G more than the baseline. More-
over, the extra model parameters are less than 0.0001M with
a total of 24.32M. Additionally, the model parameters of the
backbone of cm-SSFT [Lu et al., 2020] (SOTA) are more
than 70M. As a result, MSA achieves 20.30% and 17.25%
improvements compared with the baseline concerning rank-1
and mAP on the SYSU-MM01 dataset.

5 Conclusion
A modality-aware style adaptation (MSA) framework is pro-
posed for the RGB-IR Re-ID, which introduces two new
modalities to assist the exploration of modality-invariant fea-
tures. We design a highly compact framework, containing a
trainable feature-free image reconstruction structure to gener-
ate images, two image-based style quantification metrics and
two image-level style distance losses to assist optimization of
the whole network. As a result, the generated images signifi-
cantly boost the performance of RGB-IR Re-ID.
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