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Abstract— Auditory is a convenient and efficient way for
Human-Robot Interaction, however implementing a sound
source localization system based on TDOA method encounters
many problems, such as noise of real environments, and
resolution of nonlinear equations, switch between far field
and near field and lack of microphones for geometric po-
sitioning localization method. In this paper, a new spectral
weighting GCC-PHAT method is proposed to deal with noise.
Furthermore, the time difference feature of sound source and
its spatial distribution are analyzed. Based on prosperities of
the distribution, a space grid matching (SGM) algorithm is
proposed for localization step, which handles those problems
that geometric positioning method faces effectively. Decision
tree and valid feature detection algorithm are also proposed
to reduce computational complexity and improve performance.
Experiments are achieved in real environments on a mobile
robot platform, in which 2016 sets of speech data are tested
using four microphones in 3D space. More than 95% azimuth
localization rate with error less than 5 degrees and approximate
90% horizontal distance localization rate are obtained.

I. INTRODUCTION

Auditory system is constructed for friendly Human-Robot
Interaction (HRI) because of its naturalness and effective-
ness. More attentions were paid into auditory functions for
robots including sound source localization and separation,
automatic speech recognition, speaker recognition and so on
in last decades. Sound source localization (SSL) for HRI
means that the robot can compute the location of sound
source through sound signals collected by microphone array
fixed on the robot, where sound signal is speech in most
cases. Irie from MIT installed a simple auditory system for
robots in 1995 [1]. Q.H. Wang from Toronto University
presented a SSL system for robot localization and navigation
based on SRP-PHAT (steered response power-phase transfor-
mation) algorithm [2]. Jonas H. implemented a SSL system
for humanoid robots based on two microphones [3]. Honda
Co. stated an open source software system for robot audition
HARK consisted of sound source localization, separation and
speech recognition [4]. Carlos T.Ishi evaluated a MUSIC-
based real-time sound localization of multiple sound sources
in real noisy environments [5].
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There are three kinds of well-known methods for SSL
using microphone array: (1) Directional technology based
on high resolution spectral estimation [6]. (2) Controllable
beamforming technology based on the biggest output power
[7][8]. (3) Technology based on time difference of arrival
(TDOA) [9][10]. This method needs low time consump-
tion, which is suitable for single sound source localization.
Therefore, TDOA-based sound source localization method is
chosen for HRI in this paper.

TDOA-based sound source localization method is a two-
step algorithm, the localization accuracy depends on the per-
formance of time delay estimation (TDE). Knapp proposed
Generalized Cross Correlation (GCC) algorithm and many
weighting functions for TDE [10]. In addition, there were
many other methods of TDE, such as cepstral prefiltering
technique [11], eigenvalue decomposition [12], generalized
eigenvalue decomposition [13], acoustic transfer functions
ratio [14], etc.. Geometric positioning method is always used
to localization step. The solution of hyperbolic equations
is a non-linear optimization problem. Foy [15] proposed
Taylor Series method for locating sound source iteratively.
Maximum likelihood estimator and least square estimator
are two primary localization methods. The former needs
probability distribution of the tested distance difference and
iterative computation has high complexity. The latter solves
the overdetermined non-linear equations or approximative
linear equations to get the coordinates of sound source.
However, the underdetermined equations will be unsolvable
when the number of microphone is inadequate.

GCC method can obtain TDE efficiently. Several kinds
of general weighting functions are also given in Knapp’s
paper [10]. The phase transform (PHAT) weighting can
avoid the spreading of the peak and work in reverberation
environment well. The maximum likelihood weighting can
handle spatial uncorrelated noise. Several kinds of spectral
weighting method based on SNR were proposed, such as
[16]. To weaken the influence of spatial correlated noise
that robots face, a new spectral weighting GCC-PHAT (SW-
GCC-PHAT) method based on the SNR value of each
frequency band is proposed in this paper.

Furthermore, time difference feature and its properties of
spatial distribution are analyzed. The relationship between
time difference feature and sound source is one-to-one corre-
spondence. And the farther the distance between two sound
sources is, the greater the difference between two features
becomes. To avoid the inconvenience of geometric position-
ing methods, based on the properties of spatial distribution,
a novel localization algorithm called space grid matching



(SGM) is proposed. The most matched grid with the feature
vector to be tested is judged as the position of sound source.
In addition, Decision Tree is used for reducing the number
of template matching. Valid feature detection (VFD) method
eliminates those wrong time differences, and generates a new
valid feature vector using one or multiple sounds from the
same position.

The rest of this paper is organized as follows: In Section II,
the model of microphone array and spectral weighting GCC-
PHAT are presented. Section III gives the time difference
feature and its properties of spatial distribution. Then, SGM
method is proposed. DT and VFD algorithm are presented in
Section IV. Experiments and analysis are provided in Section
V. Finally, Section VI gives the conclusion.

II. MICROPHONE ARRAY MODEL AND
SPECTRAL WEIGHTING GCC-PHAT

A. Microphone Array Model

We construct a model of microphone array in [17]. The
following several questions must be considered for design-
ing the microphone array model: (1) The SSL task to be
resolved. (2) The cost of equipments. (3) The computational
complexity. (4) The shape of platform where microphone
array fixed. The SSL system is used for HRI, which will be
described in the following sections in detail. For reducing the
cost of equipments and computational complexity, the less
microphones are, the better. Localizing the azimuth and the
horizontal distance of sound source in 3D space needs more
than two microphones. On the other hand, the shape of the
robot should be considered. As a result, four microphones
with a cross-shaped plane are used. The microphone array
is installed on a horizontal plane of the robot with a specific
height. For the purpose of horizontal distance localization,
the aperture of microphone array should be suitable. The
topology of microphones array is shown in Fig. 1 .

Fig. 1: Microphone array model

B. Spectral Weighting GCC-PHAT

The waveform and spectrogram of noise when a mobile
robot works in real environment are shown in Fig. 2. It
is obvious that noise is generated by several specific noise
sources, such as motor of the robot, air conditioning and
computer fans. Therefore, it will be spatial correlated. In

addition, noise just distribute in several narrow frequency
bands, which means the difference of SNR will be large
between frequency bands.

Fig. 2: The waveform and spectrogram of noise

GCC-PHAT method has been widely used to estimate the
time delay of two signals collected by different microphones
generated by the same sound source. The variable x(t)
denotes the signal received by microphone. GCC-PHAT is
given in [10] as the following equation:

RGCC(τ) =
∫ ∞

−∞

ΦXmXn(ω)e jωτ

|ΦXmXn(ω)|
dω (1)

where X represents the Fourier Transform of signal x, and
ΦXmXn(ω) is the cross-power spectrum of two signals.

Based on the characteristics of noise described above. A
spectral weighting function will be proposed. Firstly, the
power spectrum of noise can be estimated from forepart of
signal:

EV (ω) =
1
M

M

∑
m=1

|Vm(ω)|2 (2)

where Vm(ω) denotes the spectrum of the mth noise frame
and M represents the number of noise frame. In addition, the
power of the current noisy signal frame is EX (ω) = |X(ω)|2.
The posterior SNR value of frequency ω is:

γ(ω) = max(
EX (ω)

EV (ω)
,1) (3)

For two signals xm(t) and xn(t), the posterior SNR γm(ω) and
γn(ω) can be obtained. Then the spectral weighting function
is proposed as:

Ψ(ω) = min{(logκ γm(ω))β ,(logκ γn(ω))β} (4)

where κ can be adjusted in different environments to keep
the weight reasonable, the greater overall SNR value is, the
greater κ should be. And β is also adjustable, which controls
the divergence of weighting coefficient, the greater β is, the
greater divergence will be. This two parameters should be
determined empirically based on experimental environments
and the performance of the SSL system. In addition, the aper-
ture of microphone array is not small enough, so different
signals collected by different microphones will be affected



by noise with varying degrees. Selecting the smaller value
as the weight is essential to guarantee that both of signals
should be affected by noise weakly which has big weight.
Finally, the SW-GCC-PHAT function can be written as:

RGCC(τ) =
∫ ∞

−∞
Ψ(ω)

ΦXmXn(ω)e jωτ

|ΦXmXn(ω)|
dω (5)

III. SPATIAL DISTRIBUTION OF TIME
DIFFERENCE FEATURE AND GRID MATCHING

In this section, the time difference feature of sound source
and its spatial distribution are presented in Part A. Then, a
novel localization method based on the spatial property of
time difference feature, termed Space Grid Matching (SGM),
is proposed in Part B.

A. Spatial Distribution of Time Difference Feature

The symbol τmn denotes time difference of two signals
recorded by m-microphone and n-microphone. The num-
ber of microphone used in the SSL system is M. Then
M(M−1)/2 pairs of time difference can be obtained, and
only M−1 pairs of them are independent mutually. However,
the measurement of time difference always exists deviation,
even mistake. And more time differences are, more robust.
Therefore, all time differences are combined into feature
vector as:

τ = [τ12,τ13, · · · ,τmn, · · · ,τ(M−1)M] (6)

The coordinate of sound source Si and microphone Rm
are defined as si = [xsi ,ysi ,zsi ] = [dicos(αi),disin(αi),hi] and
rm = [xrm ,yrm ,zrm ], where αi, di and hi are the azimuth,
horizontal distance and height of sound source Si.

Then, the feature vector of sound source Si can be com-
puted as:

dSiRm = ∥si − rm∥

dSiRn = ∥si − rn∥

τSiRmn = (dSiRm −dSiRm)/c

τSi = [τSiR12 ,τSiR13 , · · · ,τSiRmn , · · · ,τSiR(M−1)M ] (7)

where dSiRm denotes the distance between Si and Rm and c is
the speed of sound. The difference of feature vector between
sound source Si and S j is:

τd = ∥τSi − τSj∥ (8)

where Euclidean distance is used.
Considering the microphones array mentioned in section

II. The following properties of τd can be obtained.
1) If τd = 0 i.e. τSi = τSj , then αi = α j, di = d j and

hi = h j or −h j. Which means a specific time difference
feature vector corresponds to two sound sources that
are symmetric with respect to the plane of microphone
array. But the negative h j is neglected in the application
of HRI. Therefore, the relationship between feature
vector and sound source is one-to-one correspondence.

2) The relationship between τd and |si − sj|:

τd ∝

{
|αi −α j|, for |αi −α j|< 180◦

360−|αi −α j|, for |αi −α j| ≥ 180◦
(9)

τd ∝

{
|di −d j|, for di < d j

di −d j, for di ≥ d j
(10)

τd ∝

{
|hi −h j|, for 0 < hi < h j

hi −h j, for hi ≥ h j > 0
(11)

This property reveals the positive relationship between
the difference of feature vectors and the difference of
azimuth, horizontal distance and height respectively.
Which concludes that the farther the distance between
two sound sources is, the greater the difference be-
tween two feature vectors becomes. This relationship
is shown in Fig. 3, where αi, di and hi is selected
randomly, and they are representative.
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Fig. 3: The relationship between τSi andτSj

B. Space Grid Matching (SGM) Localization Algorithm

As mentioned in Part A, one sound source corresponds
to one time difference feature vector, vice versa. Moreover,
two adjacent sound sources produce a pair of similar feature
vector. The horizontal plane can be divided into many grids
with a certain size. The partition of horizontal space is
shown in Fig. 4. Those sound sources in a same grid are
adjacent, whose feature vectors are similar. On the contrary,
the distance between two different grids is farther, which
generates very different feature vectors.

Constructing a Gaussian Mixture Model (GMM) as tem-
plate for each grid based on time difference feature vector
using Monte Carlo method. For example, the height of
microphone array plane is 1m. For an arbitrary grid, its
azimuth distributes from α1 to α2, its horizontal distance
distributes from d1 to d2. The GMM of this grid can be
trained offline as:

1) Initializing a Gaussian Mixture Model.
2) Generating a azimuth α randomly, α ∼U(α1,α2).
3) Generating a horizontal distance d randomly, d ∼

U(d1,d2).



(a) Horizontal distance (b) Height (c) Azimuth

Fig. 5: The spatial distribution of feature difference for horizontal distance, height and azimuth

Fig. 4: The partition of horizontal space

4) Generating a height of male hm randomly, hm ∼
N(0.55,0.06).

5) Generating a height of female h f randomly, h f ∼
N(0.45,0.06).

6) Generating a value of gender randomly, then the height
h can be selected from hm and h f .

7) The coordinate of this random sound source is
[xs,ys,zs] = [dcos(α),dsin(α),h]. The time difference
feature vector τ can be computed using Equation 7.

8) Executing N times from step 2 to 7.
9) Training the GMM using these N τ .
For localization, the problem to be solved is which grid

dose the sound source distribute in, with time difference τ
is given. Symbol G denotes a grid. The problem can be
described as:

Gs = argmax
G

P(G|τ)

= argmax
G

P(τ|G)P(G)

P(τ)
∝ argmax

G
P(τ|G)

(12)

where Gs represents the grid of sound source . This equation
means that resolution is the grid which has the greatest
likelihood value. All of the likelihood values between each
GMM and the current time difference feature vector should

be computed, then the greatest presents the sound source
grid.

How to determine the size of a grid? Obviously, there
is not a upper bound for the size of a grid. Theoretically,
any size is correct. However, measurement error of time
difference is inevitable. The feature vector difference of two
opposite boundary of a grid indicates the sensitivity of this
grid to measurement error, more smaller the difference is,
more sensitive. The minimize size of this grid is depended
on the level of average measurement error and the sensitivity.
If the size is smaller than the valid minimize size, the
localization result will deviate from real value. Therefore, the
feature vector difference of two opposite boundary should be
greater than the average measurement error. In particular, the
sensitivity is different between each dimension, furthermore,
between different areas of one dimension.

For example, considering the microphone model men-
tioned in Section II, and the microphone array plane has
a height of of 1m, the distance between two adjacent mi-
crophones is set to 0.4m. The average measurement error is
set to 0.8×10−4 empirically. Fig. 5 shows the feature vector
difference of two opposite boundary of a grid with a specific
azimuth, horizontal distance and height size respectively.
Obviously, it is isotropic in azimuth dimension, so a arbitrary
azimuth is representative. Fig. 5(a) shows the feature vector
difference in the whole horizontal distance and height space
with a horizontal distance size ∆d = 0.6m. Azimuth is a
arbitrary constant, such as α = 30◦ here. In each area, the
plane with feature difference 0.8×10−4 can judge whether
it is reasonable that the size of horizontal distance is set
to ∆d = 0.6m or not. The size of horizontal distance of
those areas below the plane can not be equal to or less
than 0.6m. Fig. 5(b) shows the feature vector difference with
a height size ∆h = 0.1m. Fig.5(c) shows the feature vector
difference with a azimuth size ∆α = 2◦. Similarly, The size
of height and azimuth of those areas below the plane can
not be equal to or less than 0.1m and 2◦. It can be seen
that horizontal distance and height are more sensitive in far
horizontal distance area, azimuth is more sensitive in near
horizontal distance area, and the variety of sensitivity is small



between different heights.
A reasonable size of a grid in each area can be determined

by many feature vector difference figure with different size
of each dimension. For example, considering horizontal dis-
tance, the feature difference with different horizontal distance
size is shown in Fig. 6. Azimuth and height are set to 30◦

and 0.5m. In addition, the task of HRI is also considered.
The azimuth should be localized as accurately as possible.
The dangerous area and save area of the robot should be
distinguished well. Considering the aperture of microphone
array, the boundary between far field and near field is in the
region of 1.5∼2.5m. We are not interested in the height of
sound source. In summary, the minimize size of azimuth is
set to 1◦. The horizontal distance is divided into three parts:
NEAR 0∼1.5m, MEDIUM 1∼2m and FAR 1.5∼4m, which
correspond to dangerous distance, medium distance and far
distance between human and robot. The whole height space
is treated as one part.
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Fig. 6: The feature difference of horizontal distance
with different size

As we know, geometric positioning method solves lo-
calization problem inversely, from time difference to loca-
tion. The solution of inverse problem has many problems
such as nonlinear and high computational complexity. In
comparison, SGM method avoids the solution of inverse
problem. In addition, it weakens those dimensions that we
are not interested in, such as the height dimension. Which
is equivalent to reducing the dimension to be resolved.
Furthermore, it doesn’t need the assumption of far field or
near field. This method is more powerful and efficient than
geometric positioning method in some way.

IV. DECISION TREE AND
VALID FEATURE DETECTION

A. Decision Tree for SGM

The computational complexity would be very high if too
many grids are divided, since all grids are matched with the
current feature vector. For example, it is supposed that the
azimuth is divided into 360 parts, the horizontal distance is
divided into three parts. There are 360×3=1080 likelihood
values should be computed. By contrast, as shown in Fig.7,

Decision Tree is used. The number of likelihood value
computing becomes 2+2+2+3+3+5+3=20. Firstly, a GMM
should be trained for each node of the tree offline, which
is high time-consuming. For those nodes of the first seven
layers, the horizontal distance is treated as one part. In the
8th layer, the azimuth grope is 1 degree. In the stage of
localization, the likelihood value is computed layer by layer
from the root of the tree to leaf, just like the trajectory of
red line in Fig. 7. In each layer, all children of the current
node are matched with τ , then the sound source is located
to the sub-grid whose likelihood value is the greatest.

Fig. 7: Decision tree for SGM method

B. Valid Feature Detection (VFD)

The wrong time difference will deteriorate the accuracy
of localization. Therefore, it is important to remove those
invalid features which are wrong. Furthermore, in the appli-
cation of HRI in noisy environment, if a wrong localization
takes place, it is reasonable that the speaker calls the robot
again. Valid feature can be detected from one sound or
multiple sounds generated at the same position.

Here τimn denotes the time difference of the ith sound
between m−microphone and n−microphone. Theoretically,
the following equation is established:

τimn = τ jmk + τ jkn k ∈ [1,M], j ∈ [1, I] (13)

τimn = τ jmn j ∈ [1, I] (14)

where M denotes the number of microphones and j denotes
the number of sound.

Set Γimn is defined as:

ei jmnk = |τ jmk + τ jkn − τimn| k ∈ [1,M], j ∈ [1, I]

ei jmn = |τimn − τ jmn| j ∈ [1, I]

Γimn = (ei jmnk|ei jmnk > th)∪ (ei jmn|ei jmn > th) (15)

where th is a threshold, if ei jmnk is greater than th, the
equation (13) for τimn, k and j is discrepancy. Similarly,
if ei jmn is greater than th, the equation (14) for τimn, j is



discrepancy. The element number of set Γimn is qimn. Then,
the validity of τimn can be defined as:

τimn is

{
valid, for qimn < T H
invalid, for qimn ≥ T H.

(16)

where T H is a threshold decided by the number of mi-
crophone M and the number of sound I. If the number of
unmatched pairs defined by (15) is greater than T H, the time
difference τimn is considered to be invalid.

Finally, computing the mean value of the valid feature
of multiple sounds, these features correspond to the same
microphone pair:

τ
′
mn =

1
J ∑

validτimn

τimn (17)

where J presents the number of valid τimn. If J = 0, τmn is
invalid and it will be removed. All valid τ ′

mn are combined
into a new feature vector τ ′

.
Overall, the flowchart of SSL algorithm mentioned above

is shown in Fig. 8. VFD method uses one time difference
vector τ1 or multiple vectors τ1, · · · ,τm. The GMM library
is trained offline, which includes all templates corresponding
to every node of Decision Tree.

Fig. 8: The flowchart of SSL algorithm

V. EXPERIMENTS AND ANALYSIS

In this section, experiments of SSL for HRI are im-
plemented. Configuration of experimental environments is
described in Part A. Part B gives the Localization results
and analysis of stationary robot. Experiments for HRI is
presented in Part C.

A. Configuration of Experimental Environments

The mobile robot works in a hall, semi-door environ-
ment, with a size of 8m×8m. The microphones model is
described in Section II, the microphones array is placed

on the shoulder of the robot with a height of 1m, and the
distance between two adjacent microphones is 0.4m. Four
BSWA MPA416 microphones and a MARIAN TRACE8
multi-channel audio sample card are used for the sampling
of sound. The sampling rate is 44.1kHz. The scene of
experimental environments, robot and microphones is shown
in Fig. 9.

Fig. 9: Scene graph of a robot and microphone array

B. Sound Source Localization on Stationary Robot

In this experiment, the stationary robot is placed in the
center of the hall, the sound source to be localized is placed
on another 96 positions in the vicinity of microphones array,
with the azimuth of every 15 degree and the distance of 1,
2, 3, 4m from the center. The greater the distance between
the sound source and the microphone array is, the greater
noise would be, the lower overall SNR is. If the horizontal
distance of sound source is no more than 3m, the overall
SNR is 15dB, whereas, the overall SNR is 10dB. In each
position, 21 groups of speech data from different people are
recorded, the content of speech is Chinese word ”dingwei”,
”pengpeng” and ”guolai” which mean ”location”, ”Robot’s
name” and ”come here” respectively. Therefore, in total of
96×21=2016 sets of data are tested.

The localization accuracy of azimuth is 1◦, and the az-
imuth localization correct rate has 4 kinds of situations, the
difference between localization result and real value is less
than 5◦, 10◦, 15◦ and 20◦ respectively. The horizontal dis-
tance is divided into three parts: NEAR 0∼1.5m, MEDIUM
1∼2m and FAR 1.5∼4m. The whole height space is treated
as one part.

The number of component of GMM affects the localiza-
tion performance. Its value is determined by the scale of
grids. The azimuth localization performance with different
mixture number is shown in Table I. In this experiment, the
basic SGM method is used, and those data with horizontal
distance of 1, 2, 3m are tested. Obviously, the best perfor-
mance is obtained with 4 mixtures. Therefore, the number
of mixture of GMM is set to 4.

The analysis of noise and SW-PHAT-GCC method were
proposed in Section III to reduce the influence of noise,



TABLE I: The Selection of Mixture Number

GMM Azimuth Correct Rate(%)
MixNum 5◦ 10◦ 15◦ 20◦

1 94.64 97.22 98.61 98.88
2 94.44 97.09 98.61 98.88
4 95.17 97.42 98.68 99.01
6 94.58 97.22 98.61 98.88
8 94.97 97.09 98.61 98.88

TABLE II: Azimuth Localization Using SW-GCC-PHAT
method

Experimental Azimuth Correct Rate(%)
Condition 5◦ 10◦ 15◦ 20◦

1∼3m GCC-PHAT 95.17 97.42 98.68 99.01
(15dB) SW-GCC-PHAT 97.55 98.81 99.07 99.14

4m GCC-PHAT 73.21 77.98 82.14 82.34
(10dB) SW-GCC-PHAT 83.13 85.52 86.71 87.70

which is narrow band and spatial related. The greater
SNR of a frequency band is, the greater weight this fre-
quency band will have. The azimuth localization results
of this method are shown in Table II. Where the param-
eter κ and β are set to 10 and 0.55 empirically. Then,
the spectral weighting function can be written as Ψ(ω) =
min{(log10γm(ω))0.55,(log10γn(ω))0.55}. Two kinds of ex-
perimental situations with different overall SNR are tested.
Comparing the performance of SW-PHAT-GCC method with
PHAT-GCC method, Spectral Weighting improves the correct
rate largely. In particular, it is more effective in low SNR
situation.

Decision Tree reduces the matching times between the
GMM of each grid and the TDOA feature dramatically. As
mentioned in Section IV, the matching times are reduced
from 1080 to 20 for each localization, and the matching stage
takes 40 milliseconds reduced from 640 milliseconds in our
experiments.

The azimuth localization results using VFD method are
shown in Table III. In the high SNR area, one sound is ade-
quate. However, in high SNR environment, the performance
deteriorates dramatically. More than one sounds generated at
the same position are necessary. The more sounds are, the
better the performance will be. However, too many sounds
are not available in the application of HRI, generally, no
more than three sounds are used. In these experiments,
Spectral Weighting and Decision Tree are used. The number
of microphone is M = 4, the number of sound is I, so the
parameter th and T H mentioned in Section IV are set to
0.23ms and M× I/2 empirically.

The horizontal distance localization results are shown in
Table IV. It can be seen that more than 90% correct localiza-
tion rate is obtained. It can judge whether the sound source
is standing in the dangerous area effectively. Moreover, our
method can handle the problem of the switch between far
field and near field easily, which is difficult for geometric
positioning method. In other words, SGM method doesn’t
need the assumption of far field or near field.

TABLE III: Azimuth Localization Using VFD method

Experimental Azimuth Correct Rate(%)
Condition 5◦ 10◦ 15◦ 20◦

1∼3m 1 sound — 97.55 98.81 99.07 99.14
(15dB) VFD 98.35 99.60 99.67 99.67

1 sound — 83.13 85.52 86.71 87.70
VFD 93.45 94.05 94.64 94.84

4m 2 sounds VFD 95.73 96.88 97.36 97.36
(10dB) 3 sounds VFD 96.77 97.54 97.82 97.82

4 sounds VFD 97.90 98.49 98.57 98.59
5 sounds VFD 98.49 99.01 99.05 99.15

TABLE IV: Horizontal Distance Localization

No. of Horizontal Distance(%)
Sound 1∼3m 4m

1 GCC-PHAT 87.30 73.25
SW-GCC-PHAT 88.82 75.00

VFD 90.08 87.70
2 VFD 92.32 89.74
3 VFD 93.40 90.95
4 VFD 94.03 92.06
5 VFD 94.20 92.72

In addition, the experiment using a part of time dif-
ference features from a microphone sub-array with three
microphones is also implemented. The problem of SSL is
unsolvable in 3D space for geometric positioning method
using three microphones, because only two independent
time difference values can be obtained. SGM method can
weaken those dimensions that we are not interested in,
such as the height dimension. Which makes it is possible
that solving high dimension problem with a small amount
of microphones. The localization results using only those
features of three microphones in the higher SNR environment
are shown in Table V, where ”123” denotes the sub-array
that contains the 1th, 2th and 3th microphone, the same to
others. ”Mean” denotes the mean value. In this experiment,
SW-GCC-PHAT, SGM, Decision Tree and VFD are used.
However, it can be seen that the performance is lower than
four microphones.

C. Experiments for Human-Robot Interaction

In the scene of HRI, human call the mobile robot to attract
its attention, then the auditory system of the robot collects
speech signals and gives feedback to the speaker. Auditory
system consists of automatic speech recognition sub-system
and sound source localization sub-system. In this experiment,
the mobile robot works in the hall mentioned above with

TABLE V: Localization Results Using Sub-Feature

Sub- Azimuth (%) Horizontal
Feature 5◦ 10◦ 15◦ 20◦ Distance(%)

123 89.95 99.14 99.27 99.34 80.49
234 90.74 98.88 99.21 99.27 81.55
341 97.55 98.28 99.14 99.14 86.64
412 98.08 98.81 99.07 99.14 84.26

Mean 94.08 98.78 99.17 99.22 83.24



3 ∼ 5 people around it. Speech commands includes Chinese
word ”pengpeng” and ”guolai” which mean ”Robot’s name”
and ”come here”. Firstly, human call the robot, the meaning
of the command and the position of sound source can
be obtained. Then the robot turns to the speaker, and the
vision system is also used to detection the direction of
human accurately, such as ”Human Detection” and ”Hands-
Raising Detection”. In addition, if the horizontal distance is
localized as NEAR which means that the speaker stands in
the dangerous area, the robot calls attention to him that ”Pay
attention, you are standing in the dangerous area”. Secondly,
if the command is ”pengpeng”, the robot stays put. Whereas,
if ”guolai” is called and the horizontal distance is FAR, then
the robot moves 1m toward the speaker. In this step, human
can call ”guolai” several times to get a appropriate distance
between human and robot. Finally, the robot faces to the
speaker directly with a suitable distance. Which is prepared
for another interaction tasks. Sound source localization sys-
tem can localize the azimuth and judge whether the speaker
stands in the dangerous area effectively. Experiments for HRI
is shown in Fig. 10.

Fig. 10: Experiments for Human-Robot Interaction

VI. CONCLUSIONS

In this paper, a novel sound source localization method for
mobile robot based on the time difference feature and space
grid matching (SGM) method is proposed. SW-GCC-PHAT
method estimates the time difference in noise environment,
which handles narrow band and spatial related noise well.
Time difference feature of a sound source is constructed, and
its spatial distribution properties are analyzed. Based on the
properties of the distribution, space grid matching method is
proposed for localization step. Firstly, it avoids the difficulty
of the resolution of inverse problem, which makes geometric
positioning method difficult in some situation. Then, it can
handle the problem of the switch between far field and near
field easily. In addition, it can weaken some dimensions
selectively, which reduces the valid dimension. Therefore, it
can solve some questions that geometric positioning method
can not. Decision Tree reduces the matching times and
computational complexity dramatically. VFD removes those
wrong time difference features and improves localization per-

formance. Several experiments are presented, which proves
the effectiveness of these algorithm.
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