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Abstract— Humanoid robots have abilities of stepping over or
onto obstacles, which is different from wheeled robots. However
it may be difficult to apply the ordinary motion planning
methods such as Rapidly-exploring Random Trees (RRT) to
humanoid robots directly. Because these kinds of methods only
consider to circumvent obstacles and ignore the constraint of
balance. Aiming at dealing with these problems in one frame,
a novel approach based on hierarchical RRT is used to plan
the footstep for humanoid robots. It is designed according to
three basic constraints: a transition model based gait generator,
an inverted pendulum based balance controller and a collision
detection based path planner. First, a set of layered transition
model is utilized to revise the footstep according to the terrain
condition, which is able to take full use of the motion ability
as well as improve the efficiency. Then, a hierarchical strategy
is exploited to select the feasible foot location to be added in
the random tree based on the results of collision checking and
balance control. Finally, a dynamic RRT method is introduced
in our work to revise paths in changing environments. Different
experiments are given to verify the feasibility and performance
of the proposed approach in complicated environments with
both dynamic and static obstacles.

I. INTRODUCTION
Humanoid robotics is a hot research area during the past

few decades. The popularity of humanoid robots is largely
owing to their higher flexibility of action and better mobility.
Compared with the wheeled robots, there are more choices
for humanoid robots to deal with the obstacles in the path,
because they are capable to step onto and over the obstacle
in addition to dodging it. Thus ordinary methods of global
navigation for mobile robots can not be implemented in the
field of humanoid robots directly.

Motion planning for humanoid robots includes object
grasping and manipulation, footstep placement and full-body
motions, among which footstep planning is the basis to
achieve other tasks [1]. A common way of computing global
navigation strategies for biped humanoid robots is to generate
a series of feasible foot placements[2]. It is implemented by
using A* to search among a fixed set of transition model .
However, the efficiency of the A* algorithm is limited by the
size of the transition model. In a complex environment filled
with different obstacles such as the scene in Fig 1, more
predefined foot models are needed to adjust foot location
for a specific action. A sampling-based method RRT is first
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Fig. 1: An example of complicated environment

introduced in the field of footstep planning in [3]. In their
work, all of the successors are added to the tree in each
extending process. With the referent footstep spreading over
the whole search space, the method is effective in some
specific environments, such as fields with local minima or
narrow passages. However, the approach can not respond
to the dynamic changes and does not take good use of
the stepping capabilities. In this paper, a hierarchical RRT
based method is used to search for the footstep displacement
because of its efficiency in expanding the search space
and capability to deal with large transition model. Main
contribution of this paper can be concluded as follows:

1) The fixed set of transition model is replaced by a
layered model in order to quickly adjust footstep in
bad location.

2) A hierarchical strategy is added to the raw RRT in
order to deal with large transition model and prevent
the size of tree getting too large. Meanwhile, the
modified RRT is executed with both constrains of
balance control and collision detection.

3) A replanning is introduced to deal with changes in the
environment by dynamically adjusting its initial paths.

The rest of this paper is organized as follows. Section II
introduces the related work. Preliminaries are presented in
Section III. In Section IV, a RRT-based footstep planning and
some details of the algorithm will be presented. Experiments
and discussion are introduced in Section V. Section VI draws
the conclusions.

II. RELATED WORK
Due to the presence of sampling based methods such

as PRM and RRT, the motion planning study has been



improved significantly[4][5]. The traditional methods are
usually realized by searching for a collision free path in
the configuration space, which forces the robot to dodge
the obstacles and our previous work are committed to
improve the performance of these kinds of methods with
some modifications[6][7][8]. However, for the humanoid
robot, which is capable to step over or onto obstacles,
these approaches fail to consider the additional abilities.
Recently, techniques have been developed to generate the
walking pattern for humanoid robot[9][10][11][12]. They are
committed to address the problems of stable control and
dynamic balance rather than searching for a collision-free
path. In order to avoid collision with the obstacles, sensors
are applied to perceive the environment information and
navigate in unknown environment[13][14]. However, these
methods do not consider the global information and may
results in local minimal.

The concept of footstep planning for biped robots was
first proposed in [4]. The algorithm uses a discrete set of
predefined footstep locations that the robot can choose from
for the next step. When each step pointing to an equal
number of child nodes, a tree is generated from the initial
footstep position. A* search is employed to find the best
among the generated collision-free paths. The technique have
been wildly applied to different robots in various kinds of
environments[15][16][17]. There are improvements based on
this approach including the application in some dynamic
environments[18] and navigation for legged robots[19]. Ayaz
et al. [20] presented a modified strategy which can distin-
guish the footstep taken to step over obstacles from the or-
dinary ones in obstacle cluttered environment. Garimort and
Hornung apply D* Lite, a variation of A* for computing the
optimal paths[21]. It enables the robot to reuse information
when it has to revise its footstep plan according to changes in
the environment. However, the efficiency of these approaches
is limited by the size of transition models. As a result, they
are not feasible in some specific environments.

The rapidly-exploring random tree (RRT) is first applied
to humanoid footstep planning in [22]. The RRT have been
shown to provide an efficient method for solving path plan-
ning problems for mobile robot and car with kino-dynamic
constraints[23] [24][25]. Compared to the basic RRT method,
which only extends the nearest node, all the actions in the
transition model are added in the tree to explore the space in
unfriendly space, such as fields with local minima or narrow
passages.

In this paper, a modified RRT is proposed to hierarchically
choose the feasible foot displacement from a layered set of
transition model, which is effective in complex environments
with both static and dynamic obstacles.

III. PRELIMINARIES
In this section, we will define the terms and notations used

in this paper.

A. Basic RRT Algorithm
The rapidly-exploring random tree (RRT) is an incre-

mental searching algorithm in the field of path planning. It

initializes a searching tree with the initial configuration xinit
as the root node. Then the tree spreads over the configuration
space until it reaches the region within the threshold distance
to the goal xgoal.The details of the basic RRT is outlined in
Algorithm 1.

It is the common way to grow and explore the tree in the
configuration space. However, it could result in very little
expansion when applied to the area of footstep planning
directly. In section 3, several extensions are introduced to
improve the effectiveness of the search in cooperation with
a layered transition model.

Algorithm 1 Basic RRT method

Input: tree T , xinit and xgoal
1: T.AddVertex(xinit)
2: xnew = xinit
3: while Distance(xnew, xgoal) > Threshold do
4: xrand = RandomConfiguration( )
5: xnear = NearestNeighbor(xrand, T )
6: xnew = Extend(T, xrand, xnear)
7: if xnew is collision free then
8: T.AddVertex(xnew), T.AddVertex(xnew, xnear)
9: end if

10: end while
11: return T

B. Robot Model
The humanoid robot model used in our work is HOAP-2

by Fujitsu Automation. It is about 0.5 m high and weights 7
kg, with 25 degrees of freedom. The foot shape of HOAP-2
is a rectangle with 0.095 m in length and 0.065 m in width.

A Three-Dimensional Linear Inverted Pendulum Model
(3D-LIPM) is used to simplify the complex full dynamic
models. The rod corresponding to the swing leg is stretched
with a stable and rotatable point on the ground and the mass
point is linked to it. Let c = (cx, cy, cz) be the position
of mass point and (px, py) represents the ZMP location
on the floor, where x-y plane coincides with the horizontal
plane. Take the property of 3D-LIPM and dynamical balance
criterion into account, the relationship between the mass
point and ZMP can be obtained as [9]:

c̈x =
g

zc
(cx − px) (1)

c̈y =
g

zc
(cy − py) (2)

Here, zc is the intercept of the plane where the simple
model is constrained and g is the acceleration of gravity.
For a given ZMP location, the related CoM trajectory can
be obtained from the Eq.1 and Eq.2. Since the goal is to
achieve a dynamically stable gait, the ZMP trajectory should
always lie inside the supporting polygon, which is cited the
balance criteria during planning. Once the movements of
waist and feet are determined, the joints angle sequence can
be obtained by inverse kinematics.

For the humanoid robot, planning the whole body navi-
gation in the real world is computationally complex and not



feasible, because many degrees of the robot have to be con-
trolled. Thus a common way is to obtain a series of feasible
foot locations in the real scenes with a set of predefined
motions. Then the footsteps can be used to generate the
stable walking pattern with the help of 3D-LIPM and ZMP.
In the walking phase, two feet are alternatively served as
the supporting foot to maintain the balance. The relationship
between the supporting foot and swing foot can be defined
by four parameters (x′, y′, θ′, h′), such as shown in Fig 2,
which represents the relative position x′, y′, orientation θ′

and height h′ between the two feet. Considering the joint
limits violations and self-collisions, the reachable region is
limited by the following parameters:

ψleft→right = {x′, y′, θ′, h′ | x′ ∈ [−5cm, 12cm],

y′ ∈ [6.5cm, 9.5cm], θ′ ∈ [−50◦, 50◦], h′ ∈ [−5cm, 5cm]}
(3)

(a) (b)

Fig. 2: The footstep model

C. Layered Transition Model

A finite set of predefined actions, denoted as τ , is always
used to plan the footstep in a continuous state space, which
represent the next possible foot location. Thus, the foot
model can also be expressed as:

τ = (x′, y′, θ′) (4)
ψ = (τ, h′) (5)

It is worth mention that the actions of transition model
determine the reachable region for every step. When the
scene is simple with few obstacles, a set of basic foot
actions are enough to deal with the planning during walking.
However, when the scene is filled with various kinds of
obstacles, more particular actions are needed in order to step
onto or circumvent obstacles. For these reasons, the related
actions τ are classified into two classes: the basic walking
motion set Γb and adjustive motion set Γa. For each basic
action, there is a subset of adjustive motions and they both
construct the predefined footstep transition model:

Γb = (τi|i = 1, 2, ..., n) (6)
Γi = (τi(k)|i = 1, 2, ...,m) (7)
Γa = Γ1 ∪ Γ2... ∪ Γn (8)
Γall = Γb ∪ Γa (9)

Here, τi presents the basic action and τi(k) denotes the
adjustive motion related to each basic one, the number of

which is n and m respectively. Example of transition model
can be seen in Fig.3(c) and Fig.3(d).

(a) (b) (c) (d)

Fig. 3: (a) and (b) are all bad locations where the foot collides
with obstacle or lands on a unstable position respectively. (c) basic
action set (d) adjust action τi(k) within the adjust region

The adjustive action is designed to expand the stepping
capabilities in bad terrain, such as the situation in Fig 3(a)
and Fig 3(b). Thus, the robot does not need to take additional
steps when stepping on the stairs or moving in tight area. In
order to avoid collisions with obstacle or bad location from
different directions, the adjust actions are designed around
each basic footstep action within a certain region:

Ωi =

 |x′i(k)− x′i| < α
|y′i(k)− y′i| < β
|θ′i(k)− θ′i| < γ

(10)

Here, Ωi denotes the adjustive region for a particular motion
τi. α, γ and β indicate the threshold of position and rotation
between τi and τi(k).

D. Environment Model

An equally-sized grid map is used to represent the en-
vironment information in our work. Each cell contains the
related global position, a height value and a flag marked as
either free or occupied:

E = {x, y, h, tag|(x, y, h) ∈ R3, tag ∈ {0, 1}} (11)

From this map, we are able to compute the support region
by eliminating the relevant cells underneath the foot. The
collision checking used in our work is a polygon-polygon
intersection test between the outline of foot geometry and
the outline of obstacle projection onto the walking surface.
The outline of obstacle is a little enlarged to avoid the robot
getting too close to the obstacles. Based on the dynamic
balance criterion for humanoid robots, which means the
ZMP should lie inside the support region during the walking
process, we can test whether a location is stable or not
by calculating the position between ZMP trajectory and the
support polygon. To make the walking look more natural,
a moving ZMP reference is used to generate the walking
pattern [26]. In the single support phase, ZMP is set along
the middle axis of supporting foot from back to front, the
boundary of which has the same distance to the center;
While, in the double support phase, ZMP shifts from one
foot to the other smoothly.



(a) (b) (c) (d)

Fig. 4: The process of RRT based footstep planning. (a) Given a partial RRT being grown from an initial foot state to the goal state,
a node is randomly selected with goal-biased. The nearest node in the tree is selected to extend out towards the sample node. (b) Basic
actions are selected for next foot extension based on the heuristic function rules. (c) Adjust action set are added to the tree when the
basic one is not feasible. (d) With the feasible foot transition being added, the tree is expanded in each iteration.

Algorithm 2 Hierarchical RRT for footstep planning

Input: Tree T , Γall , sinit and sgoal
1: T.AddVertex(sinit)
2: snew = sinit
3: while Distance(snew, sgoal) > Threshold do
4: p = Random(0,1)
5: if p > goalProbility then
6: srand = sgoal
7: else
8: srand = RandomConfiguration( )
9: end if

10: snear = NearestNeighbor(srand, T )
11: snew(i) = GetPossibleFoot(snear,Γb)
12: for i = 1 to k do
13: if (snew(i) is valid) then
14: T.AddVertex(snew(i))
15: else
16: P = AlignExtend(snew(j), Γi)
17: for each element snew(j) in P
18: if snew(j) is valid then
19: T.AddVertex(snew(j))
20: BREAK
21: end if
22: end if
23: end for
24: if no node is valid
25: delete snear from the tree
26: end while
27: return T

IV. RRT BASED FOOTSTEP PLANNING

We use RRT as the searching method for footstep planning
because of its efficiency in exploring the configuration space
and the ability to deal with a large size of transition model.
In this section details are given on how the hierarchical RRT
algorithm is introduced to the footstep planning with multiple
constraints.

A. The Algorithm

The search space for growing the RRT tree is a content of
foot locations in the world coordinate system. Each state s

is parameterized by the global position(x, y, h), orientation
θ and supporting foot mark δ :

s = {x, y, h, θ, δ|δ ∈ {L,R}} (12)

For each supporting foot state s, the next state is determined
by the function f of motion related to it:

s′ = f(s, ψ) (13)

Given an environment map and a set of layered transition
model, A hierarchical RRT is executed to compute a series
of feasible foot locations. The details of the algorithm are
presented in Algorithm 2. The tree starts from the node
of initial foot. Rather than sampling the node completely
randomly, a goal-based control is used to make the growth
of tree more efficiently towards the goal region: with prob-
ability 1− p, the node is randomly sampled by the function
RandomConfiguration( ): with probability p, the node qrand
is set to the goal. Once the sample node has been generated,
the nearest neighbor of qrand in the tree is extended out
towards it(line10). The most important modification is how
to select the node for extension, which is shown from line
11 to 20. The details of the node extending process will be
described later. And the whole process of the algorithm is
presented in Fig 4

B. Hierarchical Strategy to Extend Node

The node extension process determines how the tree can be
expanded. On account of the discrete set of footstep state, the
common way to expand the tree with only one successor may
not be feasible in difficult area. In [22], all of successors are
added to the tree with a goal-biased modification. However,
when the size of transition model gets large, the complexity
to compute the nearest neighbor for each node and the time
of collision checking quickly increase.

Moreover, it is useless to extend all the actions since only a
small part of them are effective at each step. We should trade
off between the size of transition model and the efficiency
of the method. In order to make full use of the motion
abilities The extension process should locate the foot into an
reachable region as well as control the size of expanded tree
in each planning loop. Thus, a hierarchical extending strategy
is proposed in our work. At first, a set of basic actions are



obtained by the function GetPossibleFoot( ) and added to
the tree if they are valid. This is the first layer of extension
(line 11-14). The second layer is not needed unless the basic
foot collides with obstacles or has a bad location. Then, the
second layer of extension would be called by the function
AlignExtend( ), which selects node from the adjustive actions
for the related basic one. Here a blind search is used, which
is implemented by randomly choosing τi(k) from Γi. We do
not compute which action is exactly the best for the current
condition as it is computationally complex and not feasible.
If no nodes are added in the tree in the two layered extension,
the nearest node will be deleted from the tree and a new
circle of iteration starts until the tree grows to the region
of goal. The state will be added in the tree if it is valid in
the configuration space. The judgement of whether a state is
valid includes two parts: whether the foot location is collision
free with obstacles and whether it is stable with a reasonable
support region.

The function GenerateExtend() returns a set of basic action
nodes rather than one node, because it is difficult to decide
which is best for the current state with the consideration of
both local condition and global information. Three possible
ways to expand the tree in the first layered extension have
been identified:

(1)Quickly expanding orientation: the state which is the
nearest to the random configurations

h1 = w1||(x, y)− (xrand, yrand)||+ w2||θ − θrand|| (14)

This is the common for the basic RRT to extend nodes, which
is considered as a Monte-Carlo way of biased searching into
the largest Voronoi regions.

(2)Goal orientation: the state which is nearest to the goal
configurations

h2 = w1||(x, y)− (xgoal, ygoal)||+ w2||θ − θgoal|| (15)

Adding the state which is closer to goal enables the
planner to consider global information into and explore with
efficiency.

(3)Gait smooth orientation: the state with minimal changes

h3 = w3||h− hnear||+ w2||θ − θnear|| (16)

Here, we want to minimize the difference between the
extended state and the previous one by selecting the node
with minimal changes.

Fig. 5: Basic footstep sets with 5, 7, 9 different footsteps,
shown here relative to the left supporting foot (black).

C. Replanning

The above algorithm does not consider the dynamic
change in the environment, which may be common in our
dairy life. For example, the robot may slippage onto the
ground or encounter some unpredictable interruption. Then
replanning is needed to adapt the footstep path to the new
situations. An advantage of RRT method is that there are
some variations to adaptive for different area, one of which
is DRRT [24]. DRRT is a probabilistic analog to the widely-
used D* family of deterministic replanning algorithms. It is
implemented by efficiently removing just the newly-invalid
parts and maintain the rest. At first, a path is generated off-
line according to the initial position of all the obstacles.
Once changes are detected to interrupt the previous path, the
replanning is rapidly called to plan the new paths from the
current position to goal position. Since D-RRT plans in the
reverse order from the goal, we have to change for the start
and goal node in each replanning iteration. At the same time,
the grid map is updated together with the dynamic obstacles.

V. EXPERIMENTS AND ANALYSIS

To evaluate the proposed method, lots of simulation exper-
iments are implemented by Webots, which is a simulator that
allows users to simulate dynamic behaviors of robots in a 3D
virtual environment. The model used for humanoid robot is
HOAP-2. The simulation program is running under Windows
7 on an AMD 8600 processor with 2 G Byte of memory.
In order to test the performance of the proposed method,
experiments are performed within different scenarios.

The tested environment are a static indoor environment,
an dynamic outdoor environment and a scenario filled with
different kinds of obstacles. Because the node is randomly
sampled in the RRTs method, all the RRT methods are tested
100 times for each environment and the results present the
average of all the tests. And the results include the average
number of the expanded state(for A* and D* Lite), sampling
nodes, nodes in the tree, collision detection calls , total time
and steps needed to generate the paths.

Sets of basic motions are very important in our work,
which influence the planning behavior and results. First, the
basic motions has to guarantee the regular walking states,

Fig. 6: Average number of expanded nodes for basic footstep
sets in different environments.



TABLE I: PARAMETERS OF THE LAYERED TRANSITION MODEL

Γb τ1 τ2 τ3 τ4 τ5 τ6 τ7

τ ı (x′(m), y′(m), θ) (0.08, 0.1, 0) (0.08 0.05 0) (0.08, 0, 0) (0.07, 0.07, -30) (0.09, 0.07, 30) (0.09, 0, 30) (0.08, -0.4, 0)
ωi (α(cm), β(cm), γ) (0.8, 1.5, 25) (1, 2, 30) (0.8, 2, 20) (0.5, 1, 10) (0.5, 1, 20) (1, 2.5, 20) (0.5, 1, 15)
k (number of adjust) 6 6 4 6 8 6 4

such as going straight, turning left, turning right, standing
still, stepping back and etc. Then, for each basic motion,
the adjustive action should satisfy the Eq.(3) and cover the
reach region as much as possible. We test three sets of basic
footsteps(Fig. 5) in different kinds of environments and the
comparison result can be seen in Fig. 6. According to the
average number of expanded nodes, footstep set F7 yields
efficient plans in our experiment and the parameters are
shown in Table I. It is worth to mention that further analysis
and improvements of the parameters can probably help to
obtain faster results based on our algorithm, which is an
interesting issue to be studied in the future. The weighting
factors used for the cost function were w1 = 1.0, w2 =
0.2, and w3 = 0.1. All of these values were determined
experimentally, and offered reasonable results.

A. Static Indoor Environment

Fig. 7: Static indoor environment

In the first scenario(Fig. 7), the robot has to move from
sofa in one room to the front of desk in another room. The
challenge of the scenario includes a narrow passage to walk
through and the stairs with several steps. The obstacles are all
static, such as tea table, chairs, sofa, glove box and etc. The
environment is tested with 4 different methods. In order to
test the effect of the layered transition model, the model used
for A* algorithm and Multiple RRT is fixed, similar to related
references[15] and [3]respectively. The results of different
methods in this environment are show in Table II, which
indicate that Hierarchical RRT with goal-biased control is
able to solve the query much faster and with relatively fewer
steps. For A* method the query time increases as many steps
are needed to find its way through tight areas. The multiple-
RRT has the same problem with limited transition models
and more steps are needed to put the robots correctly on the
stairs. We also test multiple-RRT with the layered transition

TABLE II: RESULTS FOR STATIC INDOOR ENVIRONMENT

Method Time Nsample Nexpand Steps

A* method 2.68 – 6784 50
Basic RRT 7.53 8796 8796 53

Multiple RRT 2.35 536 5358 49
HRRT 2.04 1968 4356 47

HRRT (p = 0.1) 1.78 1258 2548 45

model, which needs more than 10s to find out the path. In
the penultimate row, Hierarchical RRT is executed without
goal biased control. In the last row, the RRT is executed
with a goal probability, which is set to 0.1. Although the
results in Table II indicates that goal-based HRRT seems to
be effective in finding the path, it not always performs better.
Fig. 8 gives results of different values of goal probability test
in this environment, from which we can find that the planning
time quickly when probability exceeds the optimal value. It
is worth to mention that when the value is larger than 0.8,
the RRT planner can not find a path.

Fig. 8: Average planning time for different values of goal-
probability threshold

B. Dynamic Environment

In the second scenario(Fig. 9), three kinds of obstacles are
placed randomly in the environment with the area of 1.5m×
1.5m. The blue ones presents the static obstacles the robot
has to circumvent, the green one are those lower obstacles
for robot to step on and the yellow ones are the dynamic
obstacles. The dynamic obstacles are either moving forward
or rotating about the axis. Here, we assume that the 2D grid
of environment is given and updated when the position of
obstacles changes. Two different methods are compared here,
both of which are able to deal with the dynamic environment.
The average results of 100 experiments in this environment



TABLE III: RESULTS FOR DYNAMICAL ENVIRONMENT

Method Tinitial Nexpand Sinitial

D* Lite 1.28 3874 29
Hierarchical RRT 1.09 1347 30

Method Treplan Nexpand Sreplan

D* Lite 0.78 2621 21
Hierarchical RRT 0.57 674 18

Method T ′
replan N ′

expand S′
replan

D* Lite 0.31 1620 15
Hierarchical RRT 0.28 469 14

are listed in Table III. The efficiency of planning in dynamic
environment is determined by the planning time. Since the
change is unpredictable, the robot has to quickly compute
the replanning path. Otherwise, the replanned path is useless
to adapt for the new situation. From the table , it is clear
that our methods is able to explore this environment more
effectively than the D* Lite footstep planning. This is mainly
caused the lower obstacles, which may be a challenge.

(a) (b)

(c) (d)

Fig. 9: Planning result by our method in dynamic environment
(a)The environment (b)Initial planning path (c) Replanning for the
first time (d) Replanning for the second time

C. Discrete Cluttered Environment

In the third scene, we make the scene much complicated
to test the effectiveness of our algorithm in the cluttered
environment. The ground are separated by different kinds
of cubes with the same size. The black, green and white
cubes are save for the robots to step onto with the height of
0.1m, 0.05m and 0m respectively. However, the robot has to
circumvent the black ones because the height is beyond the
limit of it. The Challenge for the robot is the multiple times
of stepping up and down in order to reach the goal. With a
adjust model of 40 actions, our method is able to plan the
stable footstep sequence in average 12.8s. As a comparison,
other methods including A* and multiple RRT based footstep
planning need more than 30s to generate the whole paths.
Fig 10 gives the results of our method in this environment

and some details of the foot location can been seen from Fig
11.

Fig. 10: Example of path generated by our method in discrete
cluttered environment

VI. CONCLUSIONS

In this paper, a method based on Hierarchical RRT is pro-
posed to solve the problem of footstep planning for humanoid
robots in complex environments. This approach expands the
reachable region and provides more motion for next step
with a layered transition model. And the hierarchical strategy
results in faster planning times, by simplifying sequences of
action needed to fit through narrow passages in the search
space. Furthermore, additional abilities are considered with
the constraints of balance control and collision detection.
In different kinds of environments, the proposed method
provides very promising results, which can not only be
effective in dealing with different obstacles and narrow
passages, but also adaptive to changes in environments.

In the future, we plan to implement the proposed methods
on real physical robot. Much work needed to been done
for improvement of the frameworksuch as optimization of
the layered transition model and some extensions on uneven
terrain.
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