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a b s t r a c t

Smile detection is a sub-problem of facial expression recognition field, which has attracted more and
more interests from researchers because of its wide application market. As for smile detection problem
itself, the ‘wild’ unconstrained scenario is more challenging than the laboratory constrained scenario.
Therefore, in this paper, we mainly focus on solving smile detection problem in unconstrained scenarios.

on Color channels (CSS) feature in pedestrian detection area, GSS can effectively describe the similarities
in a HOG feature map, while these similarities are useful and helpful for constructing a high-performance
practical smile detector. Moreover, since a smile detector using multiple features and multiple classifiers
simultaneously shows superior performance, they are also adopted by us. Finally, experimental results
indicate that the combined features (HOG31þGSSþRaw pixel) using AdaBoost with linear Extreme
Learning Machines (ELM) achieve improved performance over the state-of-the-arts on the real-world
smile dataset (GENKI-4K).

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

For human beings, smile is one of the most common expres-
sions. Smile detection has a lot of underlying applications, such as
smile shutter function in digital cameras, expression under-
standing in human-robot interaction, user expression feedback
and statistics in Kinect-type interaction games.

Typically, smile detection in unconstrained scenarios is a
challenging problem, which is because that imaging conditions of
real-world scenarios, e.g., illumination and occlusion, are much
more complex than those in laboratory environments. A well-
trained model on databases of laboratory environment surpris-
ingly behaves badly on databases in the ‘wild’ condition, while for
the model trained on real-world databases, the conclusion is
reversed [1]. Therefore, in this paper, we study smile detection
problem in unconstrained scenarios. A real-world database,
GENKI-4K, the only publicly available dataset in unconstrained
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scenarios for smile detection in research area, is selected to per-
form our experiments.

For smile detection in unconstrained scenarios, feature repre-
sentation is the key step. A lot of traditional feature representation
methods, such as PCA [2], LDA [3], Gabor [4], Haar [5], LBP [6], LPQ
[7] and HOG [8], have been utilized to solve this problem. Recently,
a variant HOG [9] is proposed and has become a promising feature
for many computer vision problems. To the best of our knowledge,
we are the first to use it in smile detection tasks and it achieves
better performance compared with other baseline features.

Inspired by the big success of Self-Similarity on Color Channels
(CSS) [10] in pedestrian detection area, in this paper, we also find
some similarities in a HOG feature map after visualizing high-
dimensional HOG feature of face images. As has been shown in
[10], encoded similarities are an important kind of supplement
feature to improve a pedestrian detector's performance. Therefore,
we propose to use Self-Similarity of Gradients (GSS) feature to
describe and encode similarities in face images. Apart from this, in
the face registration procedure, eyes-and-mouth-based alignment
is proven to be more effective than eyes-based alignment for a
smile detector. Then in the step of classification, the smile detector
using classifier combination shows better performance than those
only using one type of classification method. Finally, the best smile
recognition rate in unconstrained scenarios is achieved by using
feature combination (HOG31þGSSþRaw pixel) and classifier
combination (AdaBoostþLinear ELM) strategies simultaneously.
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The remainder of this paper is organized as follows. We review
related works in Section 2. Subsequently, Section 3 involves three
important steps in smile detection, which are face registration,
feature representation and classification. Experiments and analysis
are described in Section 4. And conclusions are indicated in Sec-
tion 5.
2. Related work

Although there do not exist many literatures dedicated to smile
detection, it is still an important part of automatic facial expres-
sion analysis, which is a mature research field in computer vision
area. For automatic facial expression analysis, the standard pro-
cessing pipeline is composed of four steps, including face detec-
tion, face registration, feature extraction and classification [11].
Among them, the last two procedures are certain research hot-
spots. Specifically, in feature extraction, geometric (or shape)-
based features [12,13] and appearance-based features [14,15] are
commonly extracted. And in classification, three different types of
binary classifiers are usually employed, which are Artificial Neural
Networks (ANN), ensemble learning techniques and Support
Vector Machines (SVM).

Regarding specific smile detection problem, most existing
research works focus on the improvements in both of these two
procedures. Shinohara et al. got effective features from Higher-
order Local Auto-Correlation (HLAC) features using Fisher Weight
Map (FWM) and achieved better performance compared with
Fisherfaces method and HLAC-features-based method for smile
detection on their own database of only four people [16]. Bai et al.
extracted Pyramid Histogram of Oriented Gradients (PHOG) fea-
tures from the region of mouth and achieved as high a smile
detection rate as Gabor features did on Cohn-Kanade AU-Coded
Facial Expression Database [17]. Nevertheless, both of them exe-
cuted experiments on databases under constrained laboratory
environments. A comprehensive work for smile detection in
unconstrained or wild scenarios was proposed by Whitehill et al.,
and it was also the basis for smile detection function of modern
digital cameras [1]. At the same time, a new dataset with contents
from the web, namely GENKI, was made public by them for smile
detection research in the real-world condition. On this dataset,
Shan proposed a novel smile detection approach by simply com-
paring the intensities of a few pixels in a face image and achieved
better performance than GaborþSVM [18,19]. And Zhang et al.
found that only using Mouth Feature (MF) could achieve com-
parable smile detection performance with the whole face image
using intensity difference, Maximum Feature Difference (MFD)
and AdaBoost algorithms but significantly reduced the computing
and memory consumptions simultaneously [20]. More recently, An
et al. showed that with the same features extracted from faces,
Extreme Learning Machines (ELM) outperformed Support Vector
Machine (SVM) and Linear Discriminant Analysis (LDA) both on
GENKI-4K and their own collected MIX databases [21].
3. Technical approach

The whole method involves three steps, which are face regis-
tration, feature representation, and classification. Details of these
three steps are introduced as below:

3.1. Face registration

Image registration is shown to be one of the vital procedures of
developing a high-performance smile detector [1]. A preliminary
for image registration is the detection of important facial
landmarks. For example, locations of two eyes have to be found in
[19] and [1]. As for facial landmark detection, numerous methods
have been proposed [22–25]. Recent research work [26] has
shown its effectiveness and efficiency in facial landmark detection
problem, and it can even handle well with partial or uncertain
labels. Obviously, [22] and [26] could be directly used in a practical
real-time smile detector. Nevertheless, an accurate face landmark
detector depends highly on an accurate face detector for initi-
alization, and in this paper, we mainly care feature-related effect
for a smile detector. Therefore, the manual manner is finally
chosen.

After this, it is very important to decide which facial landmarks
points need to be labeled. Typically, labeling the centers of eyes is
a common way. But when observing some result examples in this
way, e.g., face images in the first and third rows of Fig. 1, it can be
clearly found that some parts of faces have been truncated, espe-
cially the mouth part. To be more precise, the eyes-based face
alignment method leads to the discrepancy of mouth positions. As
we all known, image information of mouths must be significant for
a image-based smile detector. Therefore, mouths also need to be
aligned as eyes. Based on the above observation and analysis, we
propose to utilize an eyes-and-mouth-based face alignment
manner, details of which have been shown in Fig. 2. Some result
examples using this method are illustrated in the second and
fourth rows of Fig. 1. Compared with results of eyes-based align-
ment, the details of mouths are entirely reserved, which lays a
solid basis for the subsequent feature extraction process.

Finally, no matter eyes-based or eyes-and-mouth-based face
alignment method, affine transform matrixes could be easily
computed using the positions of labeled facial landmark points.
Specifically, affine transform is composed of rotating, cropping and
scaling. And 48�48 pixels are the output resolution for all images.

3.2. Feature representation

Since GSS feature absolutely relies on the pre-calculation of
HOG feature, both of HOG and GSS features are described
sequently in this subsection. Besides, HOG visualization is impor-
tant for constructing a GSS descriptor, so it will also be introduced
in detail.

3.2.1. HOG36
Histogram of Oriented Gradients (HOG) are originally proposed

by Dalal and Triggs for pedestrian detection problem [8]. For a
gray-scale input image (w� h resolution), the gradients of it could
be computed using ½�1;0; þ1�T and ½�1;0; þ1� filters. Then the
gradient orientation and magnitude of pixel ðx; yÞ could be repre-
sented as θðx; yÞ and rðx; yÞ. Afterwards, a new matrix B1 indicating
contrast insensitive is shown as follows:

B1ðx; yÞ ¼ round
pθðx; yÞ

π

� �
mod p ð1Þ

B1 has the same size as the source input image. Here, p stands for
the number of orientation bins. After this, the gradients image
could be indicated as a w � h� p sparse feature map F:

Fðx; y; zÞ ¼ rðx; yÞ if z¼ B1ðx; yÞ
0 otherwise:

�
ð2Þ

Subsequently, the feature map F need to be transformed into a
cell-based feature map C, and any cell is in the size of c� c. So in
Cði; j; kÞ, i meets the 0r ir⌊ðw�1Þ=cc condition, j meets the 0r j
r⌊ðh�1Þ=cc condition, and k meets the 0rkrp�1 condition.
Besides, Cði; jÞ is actually the sum of all the p-dimensional items of
F in the corresponding ði; jÞ cell. In the normalization step, every
feature vector Cði; jÞ has four different normalization factors which



Source Image Padding and rotating
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Fig. 2. The procedure of affine transform based on the detected facial landmarks.

Fig. 1. Face registration results using eyes-based and eyes-and-mouth-based face alignment methods. In particular, images in row one and row three are results processed by
the eyes-based face alignment method. And images in row two and row four are results processed by the eyes-and-mouth-based face alignment method.
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could be written as

Nδ;γ ¼ JCði; jÞJ2þ JCðiþδ; jÞJ2þ JCði; jþγÞJ2þ JCðiþδ; jþγ J2
� �1=2

ð3Þ

here, δ; γAf�1;1g. Finally, each cell-based feature vector Cði; jÞ
generates a cell-base HOG matrix H1ðx; yÞ:

H1ði; jÞ ¼

TαðCði; jÞT=N�1;�1ði; jÞÞ
TαðCði; jÞT=Nþ1;�1ði; jÞÞ
TαðCði; jÞT=Nþ1;þ1ði; jÞÞ
TαðCði; jÞT=N�1;þ1ði; jÞÞ

2
666664

3
777775

ð4Þ

Basically, TαðvÞ is a truncation function which means that every
element in TαðvÞ is no larger than α.

Typically, p¼ 9; c¼ 8;α¼ 0:2 are standard settings in a lot of
works. Therefore, H1ðx; yÞ is commonly a 4�9 matrix, which could
be transformed into a 36-dimensional vector and it is one item in
the final cell-based HOG feature map. In this paper, we call this
type of HOG as HOG36.
3.2.2. HOG31
A variant type of HOG36 feature has shown its effectiveness in

object detection tasks [9]. Come back to the B1 matrix which
indicates contrast insensitive, how about the contrast sensitive
condition? We use B2 stand for it:

B2ðx; yÞ ¼ round
qθðx; yÞ
2π

� �
mod q ð5Þ

For the contrast sensitive condition, q is generally two times of p.
So q is equal to 18. After the same operations as above on B2, a new
cell-based HOG matrix H2ðx; yÞ could be got and it is a 4�18
matrix. Then, let Hðx; yÞ be the combination of H1ðx; yÞ and H2ðx; yÞ:

Hðx; yÞ ¼ H1ðx; yÞ;H2ðx; yÞ½ � ð6Þ

Consequently, Hðx; yÞ is a 4�27 matrix. By computing the sum of
the elements in each row and each column of Hðx; yÞ, a 31-
dimensional vector could be obtained. And it is finally one mem-
ber in the cell-based HOG feature map. As a result, we use HOG31
to stand for this variant HOG.
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3.2.3. HOG visualization
Because of having the ability of describing shape information of

images effectively, HOG feature is one of the most important fea-
tures in object detection area. In order to observe what is hap-
pening in high-dimensional HOG world, it is meaningful to
visualize HOG features, which helps researchers to obtain a better
understanding of the behaviors of these HOG-based object
detectors.

Here, two different types of HOG visualization methods
implemented on face images are illustrated and compared in
Fig. 3. In particular, (a) and (b) in the first column stand for the
“mean” faces of non-smile and smile images in GENKI-4K. Tradi-
tional HOG glyphs of (a) and (b) are shown in (c) and
(d) respectively. In the third column, (e) and (f) are the results of
using the HOG visualizing method of Vondrick et al. [27] corre-
sponding to (a) and (b) severally.

When observing the visualized gray-scale images (c)–(f) in
Fig. 3, we find that the differences between non-smile and smile
“mean” faces are mainly distributed in the mouth, cheeks and eyes
regions. In addition, the mouth region and eyes region in the non-
smile “mean” are very similar. However, in the smile “mean” face,
the observation result is different. It is quite obvious that the
center of the mouth is different from the other parts of the mouth
but is more like cheeks.

Subsequently, to quantify the detailed similarities in a HOG
feature map, we calculate euclidean distance between the cell-
based seed feature vector and other cell-based feature vectors. One
example result is shown in Fig. 4, in which the cell-based seed is
located in the fifth row and fourth column of cell-based HOG
feature maps, and it exactly corresponds to the right side of the
mouth. The biggest difference between these two quantified pic-
tures is that, in the non-smile “mean” face image, the right side of
the mouth is not very similar to the left side of the mouth, while in
Fig. 3. Two different HOG visualization methods on “m
the smile “mean” face image, these two sides are similar. Intui-
tively, utilizing these pairwise statistics of localized gradient dis-
tributions may be beneficial to construct a smile detector with
good performance.

To this end, we encode self-similarities between cell-based
HOG feature vectors and name this kind of feature as Self-
Similarity of Gradients, the details of which will be described in
the end of this subsection.

3.2.4. Self-Similarity of Gradients
The overall framework of GSS feature extraction process is

presented in Fig. 5. The input image is a well aligned picture using
the eyes-and-mouth-based face alignment method as described in
the previous subsection. Then, on this gray-scale input image, a
cell-based HOG31 feature map ðm�m� 31Þ can be computed
easily. Subsequently, this cell-based HOG feature map is split into
several block-based HOG feature maps. And a block-based HOG
feature map has n� n cells with 31 dimensions in depth. Appar-
ently, the cell-based HOG feature vectors in a block-based feature
map could be compared and the comparison results exactly stand
for the similarities of gradients. In each block-based feature map,
there are Bcompare feature vector comparisons:

Bcompare ¼ C2
ðn�nÞ ¼

n2 � ðn2�1Þ
2

ð7Þ

Besides, the cell-base stride between two nearest-neighboring
blocks is denoted as k. So there are Bnum blocks in the HOG fea-
ture map:

Bnum ¼ m�n
k

j k
þ1

� �2
ð8Þ

Finally, the output GSS feature is a ðBnum � BcompareÞ-dimensional
vector. With regard to the cell-based feature vector comparison
functions, several methods have been tried. For example,
ean” faces of smile and non-smile in GENKI-4K.



Fig. 4. The left column corresponds two “mean” faces of non-smile and smile in GENKI-4K. The right column corresponds to the similarity intensities between the seed cell
(Row 5 and Column 4) and other cells in cell-based HOG feature maps of these two “mean” face images. The gray-scale visualized images actually show similarity intensities.
The higher gray-scale intensity means the higher similarity.

Aligned Image
(48×48)

HOG Feature Map
(6×6×31)

Similarities in Blocks
(1×36)

GSS feature
(576×1)

...

...
...

HOG Block Map
(3×3×31)

...

...
...

...
...

......

...
...

...

...

... ...

Fig. 5. Framework of extracting GSS feature.
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Cityblock, Chebychev, Cosine, Correlation, Spearman, Euclidean,
and Square Euclidean. And the Square Euclidean method is
selected because of achieving the best performance for smile
detection task. Details will be introduced in the experiment and
analysis part.
3.3. Classifiers

Three different types of popular machine learning algorithms
have been utilized in our work, which will be introduced briefly
one by one.
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3.3.1. Adaptive boosting
Adaptive boosting algorithm is originally proposed by Freund

and Schapire [28]. The key idea is, in each iteration, through
adjusting the weights of training samples, the most discriminative
feature (weak learner) could be selected. Each weak learner is
composed of a “stump” or a CART tree. It is worthy being noticed
that AdaBoost has several variations, which are mainly different in
the algorithm designment in the training step. In them, Gentle
AdaBoost [29] is selected in our experiments for that it has been
shown to be the most practically efficient boosting algorithm in
some applications [30].

3.3.2. Support Vector Machine
Support Vector Machine is initially proposed by Cortes and

Vapnik in 1995 with the soft margin idea [31]. The key to SVM in
binary classification is to find several support vectors and, at the
same time, maximize the geometric margin between positive
training samples and negative training ones. Here, a linear SVM is
selected in consideration of its good performance, simplicity and,
last but not least, the speed, which could be exhibited using the
this formulation:

f ðxÞ ¼ sgnðwTxþbÞ ð9Þ
Obviously, the complexity of this function is linear with the size of
the testing vector x.

3.3.3. Extreme Learning Machines
Extreme Learning Machines (ELM) are firstly designed for

generalized single-hidden layer feedforward networks (SLFNs)
[32]. Since the excellent classification and regression performances
comparable to SVM, ELM has attracted more and more attentions
of researchers in the computer vision area. More recently, An et al.
show that ELM performs better than other classifiers (e.g. SVM and
LDA) for a smile detector [21]. So we also pay attention to this
extremely outstanding classifier. But different to their work, we
care about ELM in the kernel case, which is more promising in
experiments compared with the early version they use [33].

The kernel version of ELM can be written as

f ðxÞ ¼ hðxÞHT I
C
þHHT

� ��1

T ð10Þ

Here, x stands for an input feature vector. hðxÞ is a function
transforming x into a higher dimensional vector and users do not
need to know how it works. Subsequently, H is a vector which has
N values and Hi ¼ hðxiÞ. N is the number of training samples.
Besides, I is a N � N identity matrix. C is the only parameter users
have to set. Finally, T is a N � 2 matrix indicating true labels for
binary classification.

So when multiplying two different hðxÞ together, there exists
the same trick as SVM doing. Kernel function is this exact trick. Let
Ω be the equal of HHT, where

Ωi;j ¼ hðxiÞ � hðxjÞ ¼ Kðxi; xjÞ ð11Þ

Back to Eq. (10), a new one could be written as

f ðxÞ ¼
Kðx; x1Þ

⋮
Kðx; xNÞ

2
64

3
75
T

I
C
þΩ

� ��1

T ð12Þ

In the training procedure, I=CþΩ
� ��1T could be easily got utiliz-

ing N training sample vectors. After this, any input test vector's
label could be instantly predicted using formulation (12). The
position of the maximal value in f ðxÞ corresponds to which class
the test vector will be in. For the sake of building a real-time smile
detector, we do not use sophisticated kernels like kernel-SVM.
Instead, a linear one is chosen by us and it could be written as

Kðxi; xjÞ ¼ xTi xj ð13Þ

3.3.4. Classifier combination
Apart from using these three algorithms individually, the

combination of AdaBoost and another classifier is also an effective
and efficient way to improve classification performance. In this
case, AdaBoost is firstly applied to only select top hundreds of
discriminative features and then another classifier (SVM or ELM) is
trained on these selected features. As feature dimension is reduced
after AdaBoost being applied, the classifier combination method
can also reduce the testing time at the same time. The dis-
advantage of this method is that the training time increases
because it has two training processes.
4. Experiments and analysis

4.1. Real-world smile database

Experiments are conducted on GENKI-4K database, which is
the only public database for the study of smile detection in
unconstrained scenarios. Some example images in it are illustrated
in Fig. 6 and its important properties are listed as below:

(1) This database contains 4000 face images (1838 “non-smile”
and 2162 “smile”); (2) The pose range (yaw, pitch, and roll of
parameters of the head) of most images is within approximately
720° of frontal; (3) GENKI-4K also has various imaging conditions
including, e.g., gender, age, ethnicity, glasses, facial hair, partial
occlusion (very few).

4.2. Experimental settings

There are five different baseline features having been compared
with GSS feature. Parameter settings of them are listed as below:

Raw pixel: All of the pixel-intensities in the normalized gray-
scale image could be concatenated into a feature vector, which is
exactly the raw pixel feature.

Gabor: The parameters of Gabor feature are composed of
8 orientations and 5 spatial frequencies (9:36 pixels per cycle at 1/
2 octave steps). We downsample the 40 Gabor Energy Filters by a
factor of 4, so the Gabor feature vector has 23,040 dimensions.

LBP: For extracting LBP feature, each face image of size of
48�48 is firstly divided into 4�4 sub-regions, each of which is in
the resolution of 12�12. Then we adopt 59-label LBP (8, 2, u2)
operator to compute LBP features for each sub-region. Conse-
quently, the LBP vector has 944ð16� 59Þ dimensions.

LPQ: For extracting LPQ feature, each face image is also equally
divided into sub-regions. All the sub-regions have the same size of
16�16. So LPQ feature of an input image is a 2304-dimensional
feature vector.

HOG: Both of HOG36 and HOG31 have the same number of cells
ð6� 6Þ. As a result, for the same input image, HOG36 is a 6� 6�
36 feature map and HOG31 is a 6� 6� 31 feature map.

GSS: Since GSS feature is extracted on HOG feature, m¼6. Every
block has 9 cells and n¼3. After using formulation (7) and (8), GSS
feature is a 576-dimensional vector.

Apart from parameter settings of baseline features, four-fold
cross validation is adopted. To put it simply, all face images in
GENKI-4K database are divided into four heaps with approximate
same ratio between non-smile and smile faces. At each time, select
one distinct heap for testing and let the other three heaps be
training samples. This procedure is subsequently repeated
three times.



Fig. 6. Smile and non-smile examples in GENKI-4K.

Table 1
Smile detection accuracies of two different face alignment strategies using linear
SVM with different features.

Accuracy (%) Face registration approach

Eyes-based Eyes-and-mouth-based

Raw pixel 85.6970.22 89.2170.12
Gabor 92.8170.55 94.0370.17
LBP 88.9171.30 91.0870.40
LPQ 88.9870.65 91.1370.66
HOG36 90.7870.57 92.5870.47
HOG31 92.6670.39 94.0670.82
GSS 89.4970.26 90.5170.35
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Fig. 7. Smile detection accuracy comparison for different face alignment methods.
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Regarding computing HOG feature, VLFeat1 is very helpful for
us. As for the implementations of classification algorithms, we
refer to LIBLINEAR,2 GML AdaBoost Matlab Toolbox,3 and Matlab
codes of ELM Algorithm.4

4.3. Results and analysis

Table 1 shows the performances of different face registration
methods under the same classification condition (SVM). By
1 http://www.vlfeat.org/.
2 http://www.csie.ntu.edu.tw/�cjlin/liblinear/.
3 http://www.graphics.cs.msu.ru/ru/science/research/machinelearning/ada

boosttoolbox/.
4 http://www.ntu.edu.sg/home/egbhuang/elm_kernel.html.
visualizing these data in Fig. 7, it is easy to get that eyes-and-
mouth-based face alignment method outperforms the eyes-based
face alignment way, which proves that aligning mouth areas is
really helpful for constructing a high-performance smile detector.
Besides, the performance improvement is more apparent on raw
pixel feature than other features.

In Table 2, the performances of seven different vector com-
parison functions for GSS feature have been listed. Obviously, the
Square Euclidean method achieves the best performance. There-
fore, in latter experiments, we extract GSS feature using this
method.

As [21] does, we also try the original ELM [33] on GSS feature
and other baseline features, the performances of which are illu-
strated in Fig. 8. A decent number of neurons for all of the features

http://www.vlfeat.org/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox/
http://www.graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox/
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is around 500. In this figure, GSS feature beats three baseline
features, which are LBP, LPQ, and raw pixel. And HOG31 achieves
the best performance, but it is still lower than the accuracy of
Linear ELM (94.06%).

In order to better understand the distributions of dis-
criminative features when using AdaBoost, we also visualize the
selected HOG and GSS features in Figs. 9 and 10 separately. In
Fig. 9, discriminative HOG31 features mainly aggregate in the
mouth region. In Fig. 10, 13 of 16 images have yellow blocks on the
Table 2
The performances of GSS feature using different
vector comparison methods under the same clas-
sification condition (linear SVM).

Method Accuracy

Cityblock 89.9670.53
Chebychev 87.2670.93
Cosine 89.2470.93
Correlation 89.6870.44
Spearman 90.0170.37
Euclidean 89.8170.53
Square Euclidean 90:5170:35
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Fig. 8. Smile detection accuracy when using ELM with different numbers of
neurons.

Fig. 9. Top 500 feature positions of
mouth area, which again reinforces the conclusion that mouth
region is more important than other places for smile detection
problems.

Table 3 demonstrates the smile recognition rates of our pro-
posed GSS features with baseline methods. In the same feature
condition, classifier combination is better than using any classifier
method alone and AdaBoost performs the worst. In the same
classifier condition, HOG31�Gabor4HOG364LPQ � LBP4
GSS4Raw pixel. We could conclude that (1) Although HOG31 and
Gabor perform comparably, Gabor is much more time and space
consuming than HOG31; (2) GSS feature beats one of the baseline
features, which implies its effectiveness for real-world smile
detection tasks. In our previous work [34], HOG31 with GSS
already achieves improved performance. Here, we add raw pixel
feature into them because it is simple and meanwhile has origin
image information. Finally, using HOG31þGSSþRaw pixel with
AdaBoostþLinear ELM achieves the best smile detection rate
(94.61%). Note that for input images with a same resolution, the
time complexity of Raw pixel is Oð1Þ, the time complexity of
HOG31 is OðmÞ, and the time complexity of GSS is Oðm � n2Þ. Here,
m stands for how many cells in a cell-based HOG31 feature map
and n stands for how many cells in a block-based HOG31 feature
map. Therefore, when using the combined features
(HOG31þGSSþRaw pixel), it is better to choose a minor n.
5. Conclusions

This paper mainly focuses on smile detection in unconstrained
scenarios. The primary contribution for solving this problem is
that a new type of feature, GSS, is proposed. GSS is inspired by CSS
in pedestrian detection and shows its effectiveness in smile
detection in unconstrained scenarios by experiments. Additionally,
aligning the mouth position into fixed place for all the face images
is found to be useful for constructing a high-performance practical
smile detector. Furthermore, feature combination and classifier
combination strategies are utilized in this work. Experiments
show that our combined multiple features (HOG31þGSSþRaw
pixel) with combined multiple classifiers (AdaBoostþ Linear ELM)
achieve the best performance (94.61%) on the GENKI-4K database.
HOG31 selected by AdaBoost.



Fig. 10. Top sixteen feature positions of GSS selected by AdaBoost, and they are arrayed row by row and from left to right.

Table 3
Experimental results of smile detection using different features and classifiers.

Accuracy (%) Classifier

AdaBoost Lin_SVM Lin_ELM AdaþLin_SVM AdaþLin_ELM

Raw pixel 88.8370.43 89.2170.12 88.4470.98 89:4971:15 88.8371.59
Gabor 93.4170.68 94:0370:17 93.9170.42 92.8871.23 92.3170.47
LBP 89.9470.43 91.0870.40 91.2670.59 91.5170.11 91:8370:82
LPQ 87.9670.72 91.1370.66 91.7170.60 91.4170.90 91:7671:33
HOG36 90.8870.22 92.5870.47 92.6870.64 93:1370:77 93.1170.47
HOG31 92.4870.61 94.0670.82 94.0670.61 94.4670.78 94:4870:65
GSS 89.0170.67 90.5170.35 90.5670.17 91:1170:47 90.9170.57

HOG31þGSSþRaw pixel 92.5170.40 94.2870.60 94.2170.35 94.5670.62 94:6170:53
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