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a b s t r a c t

Human activity recognition using sole depth information from 3D sensors achieves superior perfor-
mances to tackle light changes and cluttered backgrounds than using RGB sequences from traditional
cameras. However, the noises and occlusions in depth data, which are common problems for 3D sensors,
are not well handled. Moreover, many existing methods ignore the strong contextual information from

problems, a local point detector is developed by sampling local points based on both motion and shape
clues to represent human activities in depth sequences. Then a novel descriptor named Depth Context is
designed for each local point to capture both local and global contextual constrains. Finally, a Bag-of-
Visual-Words (BoVW) model is applied to generating human activity representations, which serve as the
inputs for a non-linear SVM classifier. State-of-the-art results namely 94.28%, 98.21% and 95.37% are
achieved on three public benchmark datasets: MSRAction3D, MSRGesture3D and SKIG, which show the
efficiency of proposed method to capture structural depth information. Additional experimental results
show that our method is robust to partial occlusions in depth data, and also robust to the changes of
pose, illumination and background to some extent.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Human activity recognition based on action sequences has
been a core topic in content-based video analysis and intelligent
surveillance for decades [1–4], while it is still challenging due to
light changes and other common difficulties in video analysis like
cluttered backgrounds.

With the advance of imaging technology in capturing depth
information in real time, researchers are focusing on utilizing
depth data to solve previous problems. Based on Kinect sensor
which generates depth sequences, many applications have been
developed [5–8]. Compared with conventional RGB data, depth
data is more robust to intensive light changes, since the depth
value is estimated by infrared radiation and is not related to visible
light [9]. Subtracting foregrounds from cluttered backgrounds is
also much easier using depth sequences, as the confusing texture
and color information from cluttered background are ignored [10].

Common pipeline for human activity recognition includes fea-
ture detection, feature encoding, feature pooling and feature
chine Perception, Shenzhen
hina.
u),
classification. Over past decades, various features have been
developed, which can be divided into two categories: holistic
feature and local feature. Specially for human activity recognition
using depth sequences, two holistic features namely depth motion
maps, skeleton joints and two local features namely surface normals,
cloud points have been widely used.

The main idea of developing depth motion maps is to find
proper projection methods to convert depth sequences into sev-
eral 2D maps. Yang et al. [11] project depth maps to orthogonal
planes and accumulate motions for each plane to obtain the depth
motion maps. Then the histograms of oriented gradients (HOG)
[12] are computed for these maps as human activity representa-
tion. Inspired by motion history images [13], Azary et al. [14]
provide motion depth surfaces to track the motion of depth map
changes, which serve as inputs for a subspace learning algorithm.
These methods [11,14] are effective to encode both body shape
and motion information. However, depth motion maps are not
robust against partial occlusions, since they belong to the category
of holistic feature encoding information from both actors and
occlusions.

Human activities can be denoted by the movements of ske-
leton joints, which are distinctive to similar activities. These
skeleton joints are recorded by multi-camera motion capture
(MoCap) systems [15] or estimated by the OpenNI tracking
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framework [6], where the skeleton joints from MoCap systems
are more accurate than that from OpenNI, despite that MoCap
systems are marker-based and much more expensive. Taking
compromise in accuracy and price, many skeleton joints based
features are developed based on the OpenNI framework [16–19].
Yang et al. [16] adopt the differences of joints in temporal and
spatial domains to encode the dynamics of joints, and then
obtain the EigenJoints by applying Principal Component Analy-
sis (PCA) to joint differences. The EigenJoints contain less
redundancy and noises, compared with original joints. Zanfir
et al. [17] provide a non-parametric Moving Pose (MP) frame-
work, which considers more features like position, speed and
acceleration of joints. To insure precision of the estimated joints,
Wang et al. [18] incorporate temporal constraints and additional
segmentation cues of consecutive skeleton joints to select the K-
best joint estimations. Another way to improve performances of
skeleton joints is to associate local features with joints. This idea
is named Actionlet Ensemble Model by Wang et al. [20], which
combines local occupancy pattern [21] with 3D joints. Pairwise
relative positions of skeleton joints are also utilized in [20],
which are more discriminative and intuitive than previous
skeleton joints based features. Additionally, Luo et al. [19]
reduce the irrelevant information of Pairwise skeleton joints
feature in [20], and propose a 3D joint feature which selects one
joint as reference and uses its differences to the rest joints as
features. Beyond [20] and [19], Rahmani et al. [22] encode
spatio-temporal depth and depth gradient histograms of local
volume around each joint, and convert the 3D joint feature [20]
into joint displacement vectors. Both local features and joint
displacement vectors are concatenated for classification, which
outperform either of them. Despite the efficiency of represent-
ing human activities by skeleton joints, these estimated joints
may not be accurate in the presence of occlusions or when
people are not directly facing camera in upright poses [23].
What is worse, these methods do not work [22] in applications
like hand gesture recognition, where joint positions cannot be
obtained.

Intuitively, surface normals reflect the shape of 3D objects.
When human activities are treated as space–time pattern
templates [24], the task of human activity classification is con-
verted to 3D object recognition, and surface normals can be
utilized for representing human activities [25–27]. Tang et al.
[25] form a Histogram of Oriented Normal Vectors (HONV) as a
concatenation of histograms of zenith and azimuthal angles to
capture local distribution of the orientation of an object surface.
Oreifej et al. [26] extend HONV to 4D space of time, depth and
spatial coordinates, and provide a Histogram of Oriented 4D
Normals (HON4D) to encode the surface normal orientation of
human activities. HON4D jointly captures the distribution of
motion cues and the dynamic shapes, therefore it is more dis-
criminative than previous approaches which separately encode
the motion or shape information. To increase the robustness of
HON4D against noise, Yang et al. [27] group local hypersurface
normals into polynormal, and aggregate low-level polynormals
into the Super Normal Vector (SNV). Surface normals are uti-
lized as local features of activities, which show robustness to
occlusions.

Unlike above three features, cloud points, which denote
human activities as a cloud of local points, are suitable to tackle
both partial occlusions and the noise of original depth data. Li
et al. [28] extract points from the contours of planar projections
of 3D depth map, and employ an action graph to model the
distribution of sampled 3D points. Vieira et al. [29] divide 3D
points into same size of 4D grids, and apply spatio-temporal
occupancy patterns to encode these grids. Wang et al. [21]
explore an extremely large sampling space of random occupancy
pattern features, and use a sparse coding method to encode these
features. Generally speaking, cloud points based methods depend
on local features which are robust against partial occlusions.
When part of features are destroyed by partial occlusions, the rest
of local features are still useful to represent human activities.
However, previous works [28,29,21] ignore the global constrains
among points and are not distinctive to classify human activities
with similar local features.

Nevertheless, previous works focus on exploring holistic or
local information separately, ignoring the complementary
properties between them. In this work, we develop a Depth
Context descriptor, which jointly captures local and global dis-
tributions of depth information. This descriptor is inspired by
shape context descriptor [30], which is widely used in shape
matching and object recognition. Depth Context improves the
original shape context, which records the distribution of local
points, by encoding the distribution of relative depth values. In
previous work [31], original shape context is extended to 3D
shape context for human activity recognition. Recently, Zhao
et al. [32] present an optimized version of 3D shape context to
characterize the distribution of local points. Since these works
[31,32] treat human activity as a cloud of 3D local points, dif-
ferent speeds of actors may result in different spatio-temporal
distributions of local points. To eliminate the effect of variant
speeds, Depth Context ignores the relationships among different
frames and encodes the layout of depth information on each
frame. Unlike works [30–32] where all detected local points are
encoded, we choose a subset of local points with strong motion
information for encoding. Since more informative local points
are encoded, our final representations show more dis-
criminative power than previous works.
2. Overview of the proposed framework

The pipeline of our human activity recognition framework is
shown in Fig. 1, where human activities are treated as sequences of
postures changing over time. These postures are described frame
by frame, ignoring the temporal relationships of postures among
different frames.

In each frame, the posture is described by two local point sets:
“reference points” and “target points”. The “reference points” is
constructed by local points with salient shape information. From
“reference points”, local points with salient motion information
are selected to form the “target points”. Intuitively speaking,
“reference points” and “target points” respectively reflect the
shape and moving regions of the posture. As shown in the second
column of Fig. 1, all green points belong to the “reference points”,
and a subset of green points with white backgrounds belongs to
the “target points”. Note that the white backgrounds stand for the
moving regions which are extracted by figuring out the differences
between current frame and previous one.

Then, each local point in “target points” is described by a Depth
Context descriptor which encodes the spatial relationships
between the local point and all local points in “reference points”.
In this way, a human activity sequence is represented by a col-
lection of Depth Context descriptors across all frames, which is
shown in the third column of Fig. 1.

Afterwards, a classic Bag-of-Visual-Words (BoVW) model is
applied to summarize a human activity representation from Depth
Context descriptors. As in the training part of BoVW model, we
sample a certain number of Depth Context descriptors and cluster



Table 1
Definition of symbols.

Symbol Definition

I A depth sequence
It The tth frame of I
X; Y The height and width of It
It ðx; yÞ The depth value of location (x,y) on It
Gt Shape information of It
g1 Threshold value for Gt

Gt A local point set generated from Gt

Mt Motion information from It
g2 Threshold value for Mt

g3 Minimum area of connected region in binary map
Mt A local point set generated from Mt

B A “diamond” structure with parameter 7
Rt The reference point set of It
Pt The target point set of It
Pj

t
The jth local point in Pt

NPt Total number of local points in Pt

Ri
t

The ith local point in Rt

NRt Total number of local points in Rt

L Maximum number of local points in each frame
α Mean distance between all local point pairs in Rt

It ðPj
t Þ The depth value of point Pj

t on It
δPj

t ;Ri
t

Indicate the type of relative depth feature

K The number of bins in Depth Context descriptor
k The kth bin

ζkPj
t ;Ri

t

A relative depth feature in the kth bin

hk
Pj

t ;þ
Accumulation of positive relative depth feature in the kth bin for

point Pj
t

hk
Pj

t ;�
Accumulation of negative relative depth feature in the kth bin for

point Pj
t

ĥ j The Depth Context descriptor of point Pj
t

Fig. 1. The pipeline of our human activity recognition framework. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this paper.)
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them by k-means to construct a visual vocabulary. The size of
clusters is empirical defined, and each cluster center is called a
“word”. Then each descriptor is assigned to the closest (we use
Euclidean distance) vocabulary “word”, and a human activity
which contains a collection of descriptors is represented by a
histogram of visual “words”. As shown in the fourth column of
Fig. 1, each gray point in feature space means a Depth Context
descriptor, and each colored point means one “word”. In the last
column of Fig. 1, the action model for each type of human activity
is a collection of histograms, which are generated by operating
BoVW model on training sequences containing certain type of
activity.

Finally, we apply a non-linear SVM classifier to compare the
histogram of testing sequence with activity models to decide the
activity type. Among above steps, our main work lies in
designing a local point detector and a Depth Context descriptor,
which will be respectively detailed in Sections 3 and 4. Our
human activity recognition framework is constructed in Section
5. Experiments are then conducted in Section 6 to evaluate our
framework. In the end, conclusions and future works are drawn
in Section 7. Besides, Table 1 demonstrates the symbols used in
this paper.

The main contributions of this paper are as follows:
First, we detect local interest points to involve strong shape and

motion clues of human activities. Second, a Depth Context
descriptor is designed to jointly encode both local and global
information. Third, our method is robust to partial occlusions and
shows more discriminative power than state-of-the-art methods
on three benchmark datasets: MSRAction3D [28], MSRGesture3D
[21] and SKIG [33].
Pt

C The size of codebook for BoVW model
H The human activity representation
3. Local point detector

Local features are robust to shelters and can be extracted
without pre-processing such as segmentation or tracking, com-
pared with global features. Human action classification methods
based on local features and a Bag-of-Visual-Words (BoVW) model
have shown promising results in processing RGB sequences
[1,34,35]. These methods firstly extract spatio-temporal interest
points (STIPs) from training videos and cluster STIPs into “words”.
Then, BoVW model is adopted to describe the original sequence by
a histogram of “words”, which is utilized to train classifiers for



Fig. 2. Comparison of two local interest point detectors. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

1 Code in http://www.eecs.berkeley.edu/Research/Projects/CS/vision/code/.
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classification. The common STIPs detectors for RGB sequences
range from Harris3D detector [36], Hessian detector [37] to cuboid
detector [1]. Recently, Xia and Aggarwal [38] extend the cuboid
detector [1] to form a new DSTIP detector to extract STIPs from
depth sequences. Specially for describing depth sequences, Li et al.
[28] sample local points from the contours of planar projections of
3D depth map. Different from works in [38,28] which concern
either obvious motion or strong shape information, our local point
detector considers both clues and thus harvests local points with
more details about human activities.

Our local point detector is inspired by Belongie et al. [30],
which is originally designed for describing 2-D shapes of
objects. In [30], points are sampled randomly from the contours
of objects, and all points are treated equally for description.
Differently, we sample local points with strong shape informa-
tion and further select from these detected points to find local
points with strong motion information. Only those points with
both salient shape and motion information are utilized as inputs
for description. To illustrate the differences between the
detector in [30] and our local point detector, local points
detected from a same human activity sequence by these two
methods are shown in Fig. 2, where the human activity is illu-
strated by two representative frames. Note that the activity
means one person puts down his right hand in front of the body.
As shown in Fig. 2(a), the contours of two frames keep nearly
unchanged, and points selected from the contours by [30] also
keep unchanged across two frames. Thus, points from [30]
cannot encode the motion. In our method, we select points with
rich shape information to encode the activity. These points
include green and yellow points in Fig. 2(b). Focusing on the
points located in the dashed circle of Fig. 2(b), the location of
yellow point changes which denotes the hand movement across
two frames. Rather than encoding all points (i.e. the green and
yellow point in Fig. 2(b)), only points with salient motion (i.e.
the yellow point in Fig. 2(b)) are encoded. Obviously, yellow
point shows more distinctive power to represent the “hand
moving” than the green points. Without encoding the green
points, redundant information is ignored. Therefore, activities
with similar redundant information can be distinguished more
easily.

Let I ¼ fItgTt ¼ 1 denote a depth sequence which contains T
frames and It ¼ fItðx; yÞjxAð1;…;XÞ; yA ð1;…;YÞg denote the tth
frame. Note that Itðx; yÞ means the depth value in position ðx; yÞ of
frame It, and X;Y are the height and width of It.

For the tth frame, we describe the shape information of each
point by Gt in Formula (1), considering the gradient values of It in
both vertical and horizontal directions:

Gt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂It
∂x

� �2

þ ∂It
∂y

� �2
s

;

ð1Þ

where points with larger values in Gt contain stronger shape
information. To eliminate the effect of noises, a threshold g1 is
established to obtain a binary map Gt in Formula (2), which
represents the shape of human posture in the tth frame:

Gt ¼ Gt4 maxðGtÞ � g1
� �

:
ð2Þ

For the tth frame, we describe the motion information of each
point by Mt in Formula (3), which is obtained by figuring out the
difference of current frame with previous frame:

Mt ¼ j It� It�1 j ; s:t: tA ð2;…; TÞ; ð3Þ

where points with larger values in Mt contain more salient motion
information. To eliminate the effect of light changes and random
noises, a threshold g2 is utilized to obtain a binary map Mt as
follows:

Mt ¼ D Mt4g2
� �� � � B;

ð4Þ

where operator D removes small connected regions, whose areas
are less than a threshold g3, from a given binary map, � is a math
operator for dilation in the field of mathematical morphology [39],
B is a flat structuring element for operator � which is chosen as a
“diamond” structure with parameter 7.

Taking computation efficiency into consideration, we sample
points from Gt and Mt to denote the shape and motion of the tth
frame. By applying a random sampling method on Gt , we obtain a
local point subset Rt as:

Rt ¼S Gtð Þ;
ð5Þ

where S denotes Jitendra's random sampling method1 [30]. Using
the motion information fromMt , we obtain a local point subset Pt

as:

Pt ¼Rt \ Mt ;
ð6Þ

where operator \ reserves those local points, which are con-
tained by Rt and the corresponding values in Mt are bigger
than zero.

The pipeline of local point detector is shown in Fig. 3 where
two adjacent depth frames are used as inputs. Refined shape map
Gt and motion map Mt are illustrated in Fig. 3(b) and
(d) respectively. Local points in Rt , which are sampled from
refined shape map Gt , are shown in Fig. 3(e). The points in white
area of Fig. 3(f) form the local point set Pt , and these points are to
be encoded by Depth Context descriptor in the next section.
Generally speaking, local points in Rt provide contextual infor-
mation for local points in Pt , and all points in Pt are encoded to
represent human posture in the tth frame.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/code/


Fig. 4. “drawX” and “drawTick” in MSRAction3D dataset.

 Adjacent frames: refined shape map

motion candidate refined motion map

local point set local point set ,

Fig. 3. The pipeline of our local point detector.
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4. Depth Context descriptor

To describe the distribution of a cloud of points, Belongie et al.
[30] propose a shape context descriptor to encode the relative
coordinates of each point with all the remaining points. The shape
context is empirically demonstrated to be robust to outliers, noise
and slight deformations. In this section, we improve the basic
shape context descriptor, and propose a Depth Context descriptor
to involve both distribution and depth information of a cloud of
points from depth sequences.

As for object recognition, Belongie et al. encode each point in
Rt [30]. While we only encode points in Pt by exploring their
relationships with points in Rt . In this way, the importance of
moving regions is emphasized for human activity representation.
In Fig. 4, we take similar human activities “drawX” and “drawTick”
from MSRAction3D dataset [28] as an example. These two activ-
ities own nearly the same human postures through whole
sequences except for slight differences in the movements of one
hand. In other words, many local points in Rt for “drawX” and
“drawTick” share similar structural information, and only those
points in Pt from the moving parts appear distinctive to represent
these activities.

The pipeline of designing Depth Context descriptor for one
point in Pt is illustrated in Fig. 5, where the human activity is
denoted by a cloud of green points, i.e. Rt , which is shown in
Fig. 5(b). Note that the numbers located in the green points
mean depth values. From the green points, we further select
local points with salient motions and these points are in yellow
color, i.e. Pt , which is shown in Fig. 5(c). Here, yellow and green
points are also called “target points” and “reference points”. In
Fig. 5(d), a target point is encoded by its relationships with
reference points, where a Depth Context descriptor with 8n3
bins is utilized to encode relative depth values between the
target point and reference points. In Fig. 5(e), the target point is
mathematically denoted as a vector with 8n3n2 dimensions,
where positive and negative relative depth values are respec-
tively recorded.



Fig. 6. Comparison of two local interest point descriptors.

Fig. 5. The pipeline of our Depth Context descriptor. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)
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Let Pt ¼ fPj
tg

NPt
j ¼ 1 denote target points with a number of NPt , and

let Rt ¼ fRi
tg

NRt
i ¼ 1 denote reference points with a number of NRt .

Note that each point refers to a vector which contains x and y
coordinates. To describe a point Pj

t , we firstly divide the space
around this point into K bins which can be seen in Fig. 5(d). The
bins are normally taken to be uniform in log-polar space. To be
invariant to scale, all radial distances are normalized by the mean
distance α between all the point pairs:

α¼
P

8 i;jA ð1;…;NRt Þ JR
i
t�Rj

t J2P
8 i;jA ð1;…;NRt Þ1

; ð7Þ

where JRi
t�Rj

t J2 means the Euclidean distance between points
Ri

t and Rj
t . Different from [30] which counts the number of points

for each bin, we accumulate the relative depth feature ζ between
target point Pj

t and reference points which are located in corre-
sponding bin. Taking one reference point Ri

t located in the kth bin
as an example, feature ζ is defined as:

ζkPj
t ;Ri

t
¼ j ItðPj

tÞ� ItðRi
tÞj ; if

Pj
t�Ri

t

α
AbinðkÞ

0; otherwise
;

8><
>: ð8Þ

which records the depth distance between Ri
t and Pj

t . Note that
ItðPj

tÞ means the depth value in position Pj
t of frame It. We also

define an indicator δPj
t ;Ri

t
as:

δPj
t ;Ri

t
¼ 1; if ItðPj

tÞ4 ItðRi
tÞ

0; otherwise

(
; ð9Þ

which indicates whether the depth value of point Pj
t is bigger than
Ri
t or not. For every point located in the kth bin, we calculate the

value of δ and feature ζ. Then, positive and negative relative depth
features in the kth bin are given as:

hkPj
f
;þ ¼

XNRt

i ¼ 1

ζkPj
t ;Ri

t
� δPj

t ;Ri
t

� �
; ð10Þ

hkPj
t ;�

¼
XNRt

i ¼ 1

ζkPj
t ;Ri

t
� ð1�δPj

t ;Ri
t
Þ

� �
: ð11Þ

By applying Formula (10), (11) to K bins, the feature vector for
point Pj

t is defined as:

hPj
t
¼ h1Pj

t ;þ
;…;hK

Pj
t ;þ

;h1Pj
t ;�

;…;hK
Pj

t ;�

h i
; ð12Þ

which records positive and negative relative depth features in all
bins. Further, hPj

t
is normalized as:

ĥPj
t
¼

h1Pj
t ;þ

JhPj
t
J1

;…;
hKPj

t ;þ
JhPj

t
J1

;
h1Pj

t ;�
JhPj

t
J1

;…;
hKPj

t ;�
JhPj

t
J1

2
4

3
5 ð13Þ

where J � J1 calculates the l1 norm of given variable.
The Depth Context descriptor ĥPj

t
can encode both local and

global distributions of depth information around local point j,
which is superior to local descriptors. As shown in Fig. 6(b), local
descriptor only encodes the movement on the hand, which can
barely reflect the activity of “raise up one hand”. Instead, Depth
Context descriptor in Fig. 6(a) not only involves local movements
but also records the global relationships between the hand and
the body.
5. Human activity recognition framework

We propose a framework for human activity recognition using
Depth Context descriptor in this section. The pipeline is presented
in Algorithm 1, where sequence I is processed frame by frame
from line 1 to line 17. Local interest points are detected from line
2 to line 5 for the tth frame It , and all points from It are described
from line 6 to line 17 by the Depth Context descriptor. After all
frames have been processed, points from frame 2 to frame T are
collected to form a point set h, which denotes each point by its
Depth Context descriptor. Finally, h is used as the input for the
BoVW model named H to form representation H, where C in line
19 means clusters for clustering method and it determines the
length of H. Proper values of C are needed to achieve state-of-the-
art results. In experiment section, we test the effect of C and
choose default values for different datasets.
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The computational complexity for calculating h isPT
t ¼ 2 OðK � NPt � NRt Þ. To reduce the computational complexity, we

sample equal number of points denoted by L for each frame using
Formula (5). Therefore NPt becomes a constant value which equals
L. Since Rt is sampled from Pt , the number of points in Rt denoted
by NRt is not bigger than L. With above conditions, the computa-
tional complexity is simplified as K � L2 � OðTÞ, which means the
time cost of our framework grows linearly with the number of
frames. In other words, our framework is efficient to implement
which enables potential usage in real time applications.
2 Code in http://www.vlfeat.org/applications/caltech-101-code.html.
6. Experiments

6.1. Datasets and settings

The MSRAction3D dataset stands out as one of the most widely
used depth datasets in the literature [40], which is proposed in
[28]. It contains 20 actions: “high arm wave”, “horizontal arm
wave”, “hammer”, “hand catch”, “forward punch”, “high throw”,
“draw x”, “draw tick”, “draw circle”, “hand clap”, “two hand wave”,
“side boxing”, “bend”, “forward kick”, “side kick”, “jogging”, “ten-
nis swing”, “tennis serve”, “golf swing” and “pick up & throw”.
Each action is performed 2 or 3 times by 10 subjects facing the
depth camera, and there is totally 567 depth sequences in the
dataset.

The MSRGesture3D dataset is proposed in [21], which is a hand
gesture dataset of depth sequences. It contains 12 gestures defined
by American Sign Language: “bathroom”, “blue”, “finish”, “green”,
“hungry”, “milk”, “past”, “pig”, “store”, “where”, “j” and “z”. Each
action is performed 2 or 3 times by each subject, resulting in 336
depth sequences.

The SKIG dataset is proposed in [33], which contains 1080 hand
gesture depth sequences. It contains 10 gestures, including “circle”,
“triangle”, “up-down”, “right-left”, “wave”, “Z”, “cross”,
“comehere”, “turnaround” and “pat”. All gestures are performed
with hand postures (i.e., fist, flat and index) by 6 subjects under
2 illumination conditions (i.e., strong and poor light) and 3 back-
grounds (i.e., white plain paper, wooden board and paper with
characters).

Several action snaps from datasets above are shown in Figs. 7–
9, where inter-class-similarities among different types of actions
are observed. In MSRAction3D dataset, actions like “drawX” and
“drawTick” are similar except for slight differences in the move-
ments of one hand. For MSRGesture3D dataset, actions like “milk”
and “hungry” are alike, since both actions need the motion of
bending palm. What is more, self-occlusion is also a main issue for
the MSRGesture3D dataset. The SKIG dataset is utilized to test the
robustness of our method against pose, illumination and back-
ground. Note that snaps in Fig. 9 are obtained using foreground
extraction [41], where only hand regions are extracted from ori-
ginal depth sequences.

We set the number of sampled points in each frame, which is
denoted as L, to 100. As in Fig. 5(d), we respectively set 8 and
3 splits for theta and radius of spatial bins. The inner radius for the
log-polar space is set to 0.3 and the outer radius is set to 5. Above
settings are the same as shape context [30] except for the splits of
theta. To describe the distribution of points more precisely, we
change the splits of theta from original value 4 to 8. This change
doubles the number of bins denoted by K, which increases from 12
to 24. Default values of C for MSRAction3D dataset, MSRGesture3D
dataset and SKIG dataset are 3000, 1000 and 1000. Default values
for g1; g2; g3 are 0.1, 10 and 100.

Recognition is conducted using a non-linear SVM with a homo-
geneous Chi2 kernel [42], and parameter “gamma” which decides
the homogeneity degree of the kernel is set to 0.8. We choose the
“sdca” solver for SVM and use other default parameters provided in
vlfeat library.2 In order to keep the reported results consistent with

http://www.vlfeat.org/applications/caltech-101-code.html
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Fig. 7. Snaps in MSRGesture3D dataset.

Fig. 8. “milk” and “hungry” in MSRGesture3D dataset.
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Fig. 9. Three poses for one type of activity named “circle” in SKIG dataset.
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other works, we adopt the same cross-validation methods with
[28,21,33]. It is noted that cross-subject validation is adopted for
MSRAction3D dataset, with subjects # 1,3,5,7,9 for training and
subjects # 2,4,6,8,10 for testing [28]. Since random initialization is
involved in clustering method of BoVWmodel, all confusion matrices
are average values over 10 times running results.

6.2. Framework evaluation

Previous works observe that the number of cluster, denoted as
C, has an effect on the performance of BoVW model [43]. To
achieve better performance, parameter C ranging from 1000 to
4000 at 1000 intervals are tested on MSRAction3D, MSRGesture3D
and SKIG datasets. As shown in Fig. 10, our framework achieves
more than 90% recognition precisions with different C, which
shows the robustness of our method. When C respectively equals
to 3000, 1000 and 1000, highest precisions are obtained for three
datasets.

We evaluate Depth Context and our local point detector in
Fig. 11, where “Depth Context” and “shape context” respectively
mean applying Depth Context and shape context descriptor to
encode all local points in Rt . Since our detector selects local points
with salient motions from Rt to form a new point set Pt , “Depth



Fig. 10. Evaluation of the effect of parameter C.

Fig. 11. Evaluation of Depth Context descriptor and our detector on MSRAction3D
dataset.

Table 2
Comparisons between our method and related works on MSRAction3D dataset.

Methods Accuracy (%) Details

Bag of 3D points [28] 74.70 Li et al. (2010)
Motion depth surface [14] 78.48 Azary et al. (2013)
STOP [29] 84.80 Vieira et al. (2012)
Random occupancy pattern [21] 86.50 Wang et al. (2012)
Actionlet ensemble [23] 88.20 Wang et al. (2014)
Depth motion maps [11] 88.73 Yang et al. (2012)
HON4D [26] 88.89 Oreifej et al. (2013)
DSTIP [38] 89.30 Xia et al. (2013)
Moving pose [17] 91.70 Zanfir et al. (2013)
Special Euclidean [44] 89.48 Vemulapalli et al. (2014)
Super normal vector [27] 93.09 Yang et al. (2014)
Our method 94.28 C¼3000, protocol of [28]

Table 3
Comparisons between our method and related works on MSRGesture3D dataset.

Methods Accuracy (%) Details

Motion depth surface [14] 85.42 Azary et al. (2013)
Random occupancy pattern [21] 88.50 Wang et al. (2012)
HON4D [26] 92.45 Oreifej et al. (2013)
Super normal vector [27] 94.74 Yang et al. (2014)
Depth gradientsþRDF [22] 95.29 Rahmani et al. (2014)
HOPC [45] 96.23 Hossein et al. (2014)
Our method 98.21 C¼1000, protocol of [21]

Table 4
Comparisons between our method and related works on SKIG dataset.

Methods Accuracy (%) Details

DBN þ depth [46] 73.80 Hinton et al. (2006)
HOG3D [35] 75.40 Klaser et al. (2008)
RGGP þ depth [33] 76.10 Liu et al. (2013)
DBN þ RGB-D [46] 85.90 Hinton et al. (2006)
RGGP þ RGB-D [33] 88.70 Liu et al. (2013)
4DCOV [47] 93.80 Cirujeda et al. (2014)
Our method 95.37 C¼1000, protocol of [33]
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Fig. 12. Our best performance on MSRAction3D dataset.
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Contextþour detector” and “shape contextþour detector”
respectively mean applying Depth Context and shape context
descriptor to encode all local points in Pt .

Our detector improves the performance of “Depth Context” by
8.83% and improves “shape context” by 12.93%, which shows the
significance of selecting motion related local points for classifica-
tion. Since Depth Context not only encodes local point distribution
but also involves depth information, “Depth Context” achieves
16.04% higher than “shape context” and “Depth Contextþour
detector” achieves 11.94% higher than “shape contextþour
detector”. Moreover, “Depth Contextþour detector” achieves the
highest precision of 94.28%, which verifies the complementary
property of motion and depth information.

6.3. Comparison with state-of-the-art methods

We compare our framework with state-of-the-art methods in
Tables 2–4, where the original works which collect the datasets
are in bold. The best performances of our framework are shown
in Figs. 12–14. Compared with HON4D feature [26], 5.39% and
5.76% improvements are respectively achieved for MSRAction3D
and MSRGesture3D datasets. Compared with Super Normal
Vector feature [27], 1.19% and 3.47% improvements are also
achieved. On SKIG dataset, we achieve precision of 95.37%, which
is 6.67% higher than original work [33]. Our framework outper-
forms state-of-the-art works which lack either local or global
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information, since we not only explore local motion and depth
clues for local interest points, but also encode the global con-
strains among these points.

6.4. Robustness evaluation

6.4.1. Partial occlusion
To evaluate the robustness of proposed framework to occlusion,

we adopt the same settings in [21] and divide depth sequences
from MSRAction3D dataset into two parts respectively in x, y and t
dimensions. The whole sequences are divided into volumes, and
eight kinds of occlusions are simulated by ignoring points fall into
specified volumes. Fig. 15 illustrates two kinds of occlusions for a
same depth sequence, where the shape of actor is dramatically
changed and some salient motion is also hidden. The performance
of our method is compared with Random Occupancy Pattern (ROP)
feature [21] in Table 5. Obviously, our method achieves higher
precisions than ROP with all kinds of occlusions. Note that sparse
coding method can improve the robustness of given features to
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Fig. 13. Our best performance on MSRGesture3D dataset.

Fig. 15. Partial occlusions in
occlusions [21]. Without applying sparse coding, our method still
outperforms “ROPþsparse coding” under most types of
occlusions.

6.4.2. Pose, illumination and background variations
We test the robustness of our method against pose, illumina-

tion and background, which are short for “p”, “i” and “b”. SKIG
dataset is utilized, which contains 3 poses (fist, index and flat),
2 illumination conditions (light and dark) and 3 backgrounds
(wooden board, white paper and paper with characters). The
robustness against pose is shown in Table 6, where “i” and “b” are
set to constant values. When “b¼1, i¼1”, all sequences with the
first kind of background and the first kind of illumination are
collected. Then these sequences are split into 3 groups for three-
fold cross-validation, where each group has sequences of same
posture.

In this way, two kinds of postures are utilized for training and a
new one is for testing. As in Table 6, we gain higher than 95%
precision under different conditions, which shows the robustness
against pose changes. Similar experimental settings are applied for
Fig. 14. Our best performance on SKIG dataset.

MSRAction3D dataset.



Table 5
Evaluation the robustness of different methods to partial occlusions.

Occlusion ROP [21] (%) ROPþsparse coding [21] (%) Our method (%)

1 83.05 86.17 91.06
2 84.18 86.50 94.39
3 78.76 80.09 84.74
4 82.12 85.49 85.13
5 84.48 87.51 93.23
6 82.46 87.51 94.21
7 80.10 83.80 93.10
8 85.83 86.83 93.36

Table 6
Evaluating the robustness of our method to pose changes.

b ¼ 1 b ¼ 2 b ¼ 3

i ¼ 1 96.63% 96.67% 96.67%
i ¼ 2 96.67% 96.67% 97.22%

Table 7
Evaluating the robustness of our method to illumination changes.

b ¼ 1 b ¼ 2 b ¼ 3

p ¼ 1 96.67% 95.83% 97.50%
p ¼ 2 96.67% 99.17% 96.67%
p ¼ 3 95.83% 98.33% 95.83%

Table 8
Evaluating the robustness of our method to background changes.

p ¼ 1 p ¼ 2 p ¼ 3

i ¼ 1 97.78% 98.89% 98.89%
i ¼ 2 98.33% 99.44% 97.78%
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testing the robustness of illumination and background variations.
Results in Tables 7 and 8 also illustrate the robustness of our
method.
7. Conclusions and future works

We propose a new Depth Context descriptor for human activity
recognition using sole depth sequences. Specifically, a local interest
points detector is introduced to denote local motion and shape
clues. Then the Depth Context descriptor is designed to encode local
points with local and global constrains. Finally, BoVW model is
utilized to summarize local features and a non-linear SVM classifier
is applied for classification. Our Depth Context is able to distinguish
similar human activities, and shows robustness against partial
occlusions, different poses, various illuminations and backgrounds.
What is more, Depth Context can be calculated efficiently, showing
potential usage in real time applications. Future works focus on
combining extra information from local interest points for more
challenging tasks, such as human activity detection using sole depth
sequences and tackling with cluttered backgrounds, treating this
proposed framework as a fundamental work.
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