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A B S T R A C T

To better understand the expression of human smile, there have been considerable studies about automatic
smile detection. Despite all the research, few attention is paid to analyze a smile in a comprehensive way. In this
paper, a smile analysis system is presented to detailedly measure a person's smile, which consists of three main
modules: smile detection, smile intensity estimation and spontaneous versus posed (SVP) smile recognition.
Firstly, our recent proposed feature, Self-Similarity of Gradients (GSS), is employed to detect smiling facial
images in unconstrained scenarios. Secondly, the smile intensity is estimated in terms of different facial regions
rather than merely the mouth region, which is also applied in the temporal phase segmentation of a smile.
Finally, in SVP smile recognition module, a discriminative learning model (DLM) is proposed based on a local
spatial-temporal feature, which devotes to obtaining most robust and discriminative patterns of interest. The
first two modules are the bases of the last, preparing a deeper understanding of a smile. Experiments on
benchmark databases are carried out and compared with the state-of-the-art methods respectively, which
validate the advantages of our approach of SVP smile recognition. Moreover, a comprehensive analysis of
human smile is given for the first time to the best of our knowledge, which could pave the way for computers
that better assess the emotional states of their users and provide useful and important information in helping
the research of psychology and behavior science.

1. Introduction

Smile is an influential biometric cue in social interactions, which is
also the easiest facial expression to be voluntarily posed [1]. To make a
computer better understand human smile, first, substantive smiling
facial images or sequences need to be collected, which can be
completed by smile detection. Besides, as a fundamental and crucial
step of smile analysis, automatic smile detection in unconstrained
scenarios provides input data for the following further analyses: smile
intensity estimation and spontaneous versus posed (SVP) smile
recognition. As is known, smile occurs with different intensities such
as “grin” and “chortle”, thus, an effective method of smile intensity
estimation can quantify the expression so as to determine the extent of
joy. However, smile differs not only in intensity but also in motivation,
which brings the diversity of smile. Smile can signal enjoyment,
politeness or even can cover other emotions like embarrassment, fear
or frustration [2]. So far, 18 different types of simile are identified by
Ekman [1] who claimed there might be as many as 50.

A comprehensive smile analysis system is built in this paper, which
has wide applications such as interactive systems, video conferences,

digital video cameras and patient emotion monitoring. For example,
the intensity estimation module is a measuring tool in analysing smile,
which can be embedded in video cameras in order to capture the most
brilliant smile. People suffering from autism [3] can use SVP smile
recognition in social communication to distinguish genuine and
deceptive facial expressions. By employing this technique in a video
camera, a natural and unforced smile can be captured excluding
artificial and posed ones.

In this paper, a comprehensive smile analysis system is proposed,
in which three modules are involved including smile detection, smile
intensity estimation and SVP smile recognition. Fig. 1 shows a brief
framework of our system. First, the basic module of our system is smile
detection, through which substantive data of smiling faces can be
acquired. To meet the complexity of real-world conditions, smile
detection in unconstrained scenarios is focused. The study of this
module is explicitly presented in our recent work [4] which won't be
repeated here. Second, smile intensities are estimated in terms of
different facial subregions rather than merely the mouth region, in
which the state-of-the-art method of facial landmark localization is
employed. Also, with the computed intensities of different facial
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subregions, temporal phase segmentation of smile is accordingly
carried out. Third, most proposed methods for SVP smile recognition
extract only geometry-based features [5–7], which may lead to the loss
of texture information. In fact, texture information plays an important
role for smile analysis, especially for SVP smile recognition. Therefore,
an appearance feature based on a discriminative learning model (DLM)
is proposed by improving the discriminability of Completed Local
Binary Patterns from Three Orthogonal Planes (CLBP-TOP). Note that
the third module SVP smile recognition is a refined and expanded
version of our conference proceedings paper [8]. In this paper, more
details are given about this module and different methods of spatio-
temporal division are applied.

The rest of paper is organized as follows: Related work is
introduced in Section 2. Section 3 presents smile intensity estimation
including facial landmark localization and temporal phase segmenta-
tion. SVP smile recognition is addressed in Section 4 where the
discriminative learning model is also described. Section 5 demon-
strates experimental results and analysis, then conclusions of the paper
are drawn in Section 6.

2. Related work

Speaking of automatic smile detection in unconstrained scenarios,
the work of Whitehill et al. is the foundation, which is motivated by
applying automatic smile detection on commercial digital cameras [9].
Bai et al. proposed a pyramidal representation of HOG (PHOG) for
smile detection and achieved comparable performance with regard to
Gabor [10]. Shan presented a novel smile detection approach by simply
comparing the intensities of a few pixels in an image and achieved
better performance than Gabor+SVM [11]. For smile detection,
efficient image registration and feature representation are both im-
portant [9]. For image registration, works in [12–14] involve common
approaches. However, how many facial landmarks contribute to the
best smile detector has not been much investigated. For feature
representation, there are some traditional feature extraction methods
such as PCA [15], LDA [16], Gabor [17,18], Haar [19], LBP [20] and
HOG [21]. Recently, a low-dimensional HOG feature is obtained by
Felzenszwalb et al., using an analytic dimensionality reduction ap-
proach [22]. In our recent work [4], we employed the improved HOG
due to its low dimensions and outstanding performance. Besides, based
on the observation of HOG's visualization and the inspiration from self-
similarity on color channels (CSS) [23], a new descriptor named Self-
Similarity of Gradients (GSS) is proposed to capture pairwise simila-
rities of localized gradient distributions. Moreover, an eye-mouth based
alignment is adopted in the face registration procedure, which is
proven to be more effective than the eye-only based alignment.

Facial expression intensity estimation is a nontrivial task. The

majority of automatic approaches characterising intensity use a two-
level model known as onset-apex-offset. In Facial Action Coding
System (FACS), five intensity levels for each facial action unit (AU)
[24] are specified. As mentioned in [25], there is much less work in the
literature on AU intensity estimation. Savran et al. [25] comparatively
investigated person-independent intensity estimation of 25 AUs, which
showed that their proposed intensity estimator based on regression of
appearance features proves to be superior to that based on SVM
margins. Delannoy et al. [26] proposed an automatic estimation of the
dynamics of facial expression using a three-level model (High, Medium
and Low) of intensity. They verified that using the FACS intensity
scoring led to a considerable overlap between the estimated intensities
while using a three level model enabled to classify the intensities with
significantly greater degree of accuracy. As presented in work [6,27],
the smile intensity is represented using the amplitude of lip corners,
where the facial fiducial points must be localized and tracked first.

The task of SVP smile recognition is challenging as posed smiles
often look very similar to spontaneous ones, which makes them difficult
to distinguish using human eyes. However, they are actually different
because they are brought about by different brain systems. From the
knowledge of neurology, the face is innervated by two different brain
systems that compete for control of its muscles [28]. One is the cortical
brain system related to voluntary and controllable behaviors. The other
is the sub-cortical systems taking in charge of involuntary expressions.
Facial expressions mediate by these two systems show differences both
in morphology and dynamics. Accordingly, posed smiles are innervated
by the cortical brain system while spontaneous smiles are stimulated by
the sub-cortical system. From researches in [29,30], facial expressions
initiated by sub-cortical system tend to be more symmetrical, consis-
tent and reflex-like. However, facial expressions initiated by cortical
system tend to be less smooth and have more variable dynamics.
Accordingly, all types of smiles can be divided into two categories:
voluntary (deliberated/fake/posed) smiles and involuntary (sponta-
neous /genuine/felt) ones.

To date, spontaneous versus posed (SVP) smile recognition has
gained certain attention [31–35]. Five markers are proposed by Frank
et al. [36] to differentiate the genuine smiles from the posed ones
including two morphologic ones: D-maker and symmetry and three
dynamic ones: smoothness, duration and synchrony. According to the
D-maker, one of the differences between genuine and posed smiles is
that when a person really feels happy, zygomatic major contracts
together with orbicularis oculi, which is frequently used by common
people to distinguish the two types of smiles. However, later studies
show that the D-marker is not accurate as the zygomatic major and the
orbicularis oculi can both be activated under spontaneous and posed
conditions [37] and there is no significant difference in symmetry
between posed and spontaneous smiles [32]. Similar conclusions can

Fig. 1. Brief framework of our smile analysis system.
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also be found in [6]. Cohn et al. observed that posed smiles are of larger
amplitude and have a less consistent relationship between amplitude
and duration than spontaneous ones [31]. Besides, a deceit detection in
facial expressions was implemented by Zhang et al. [38], where the
enjoyment expression is involved. In order to carry out the detection,
they used distance based features and texture based features, achieving
an accuracy of 73.16% in deceit detection of enjoyment expression. M.
Valstar et al. proposed a method to distinguish SVP smiles by fusing
head, face, and shoulder modalities [7]. E. Hoque et al. explored
temporal patterns to distinguish delighted smiles from frustrated
smiles with their self-built database, achieving the best accuracy of
92% [5]. Moreover, they found that acted instances were much easier
for computer to classify than natural ones. H. Dibeklioğlu et al.
proposed a geometry-based feature to spot spontaneous and posed
smiles and carried out assessment on different facial regions, feature
selection, fusion strategies, etc. [6]. Besides, a corpus named UvA-
NEMO is collected including 1240 video sequences which is the largest
SVP smile database publicly retrievable. Recently, they extended their
work by adding gender and age effect analysis and expanded experi-
ments with different classifiers on several databases, more details of
which can be obtained in [27]. Pfister et al. proposed a spatiotemporal
method to distinguish between SVP facial expressions using the image
sequence as a volume with a corpus including both natural and infrared
face videos [39]. Instead of extracting geometry feature, they extended
the local appearance descriptor into the spatial-temporal descriptor to
implement the task. In our earlier work [40], a smile deceit detection
has been done by training AU6 and AU12 simultaneously on a static-
image database. It should be noted that subtle smiles appeared in a
fleeting time as micro-expressions are not considered in the research
scope of spontaneous versus posed (SVP) smile recognition. For more
details about micro-expressions, refer to the specific research topic as
micro-expression recognition [41].

We summarize our main contributions of the paper as follows. 1) It
is the first time that a comprehensive analysis of human smile is given
to the best of our knowledge including smile detection, smile intensity
estimation and SVP smile recognition. 2) DLM is proposed to obtain
discriminative and robust patterns extracted by CLBP-TOP. 3) Taking
into account of the non-synchronous motion of different facial regions,
temporal segmentation is implemented according to the corresponding
facial region.

3. Smile intensity estimation

As the module of smile detection is presented in detail in our recent
work [4], we skip the module and introduce the module of smile
intensity estimation. In this paper, we follow the work in [6,27], where
the smile intensity is computed using the amplitude of lip corners.
Therefore, facial landmarks like lip corners, eye or eyebrow corners are
crucial for the intensity estimation. In order to obtain accurate facial
landmarks, an efficient method of facial landmark localization needs to
be explored. In addition, geometry-based feature extraction commonly
relies on accurate and reliable detection and tracking of fiducial points.
If facial landmarks can be precisely located and tracked, the accuracy of

geometric feature extraction will be promoted. Therefore, attentions
are paid to the state-of-the-art methods of facial landmark localization.
Recently, great improvements have been made in the research field
[42–45], where facial landmarks can be located faster and more
accurately than traditional active appearance model (AAM) [46].
Inspired by these works, a method of shape or semantic facial land-
marks is adopted without using any parametric shape models proposed
in [43], which has shown extraordinary performance in both accuracy
and efficiency. In the following, we firstly introduce the shape regres-
sion model as shown in Fig. 2.

3.1. Facial landmark localization

Different from [43], a smart restart approach [44] is added to
predict failure cases early on. In addition, a two-level cascaded
regression and a correlation-based feature selection are adopted
similar to [43,44]. Concretely, for N facial landmarks
S x y x y= [ , ,…, , ]N N

T
1 1 as a face shape, the goal is to find a shape S that

is as close as possible to the true shape S , i.e., minimizing S S∥ − ∥.
Specifically, ferns are chosen as the primitive regressors. A fern is a
classification based regressor that takes an F dimensional input feature
vector and computes an output vector by classifying the input into one
of the 2F bins. The classification is performed by comparing the input
feature vector to F thresholds of the fern. The classification result is an
F dimensional binary vector f f f f= ( , ,…, )F1 2 where fi=0 if the i-th
attribute is greater than the corresponding threshold and fi=1 other-
wise. The output of the regressor is determined by looking up the
output entry for the classification vector.

Our algorithm generates face shape by repeatedly refining an initial
guess shape via a series of cascaded regression functions. The refine-
ment using a regression function R is regarded as a stage, and there are
in total T stages. In each stage t, the output of the previous stage St−1,
together with the input image I are used to predict a difference shape
ΔS. The sum of the difference shape and the current predict shape is
the output of stage t, which can be formulated as:

S S R I S t T= + ( , ), = 1,…, .t t t t−1 −1 (1)

wheare t T∈ [1 .. ] is the stage index. Given N training examples

I S{( , )}i i i
N
=1, the regressors are sequentially learnt until the training

error no longer decreases:

∑R S S R I S= arg min − ( + ( , ))t
R i

N

i i
t

i i
t

=1

−1 −1

(2)

where Ii is a facial image and Si
t−1 is the estimated shape in previous

stage.
The regression functions are represented by a series of weak

regressors, i.e.

R r r r= ( , ,…, )t
k1 2 (3)

where each rj is called a primitive regressor. In each stage, the input
shape is refined by all the primitive regressors in a cascaded manner.
As shown in Fig. 3, k primitive regressors form a chain of regressors,
where each primitive regressor is called a level. The level k regressor

Fig. 2. Process of facial landmark localization (a): input facial sequences then perform the coarse face detection; (b): fast shape regression in a coarse to fine manner; (c): face alignment
(The person in the image is a member from our lab).
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takes the output shape of previous level as input and predict a shape
vector to refine the input shape vector. The refined shape vector is then
passed to the next level of regressor for further refinement.

Typically hundreds of primitive regressors are used in each stage.
The primitive regressors are weak regressors because they are only able
to reduce the shape error slightly, therefore a series of primitive
regressors are needed in each stage. Although each primitive regressor
alone is not able to reduce the shape error much, all the primitive
regressors collectively are able to reduce the shape error significantly.
With enough number of primitive regressors, the final regression
function becomes very powerful.

Since the output of the algorithm is a refinement of the input shape,
the quality of the initial guess would inevitably affect the alignment
output. To remove the effect of this randomness, multiple initial shapes
are used simultaneously and the final shape is computed as a
combination of all outputs.

In the preprocessing of regression, a rough face box is detected,
then the landmark is estimated in a coarse-to-fine way. Next geometric
centers of eyes and month can be detected, which can be employed for
the facial image alignment. Using the presented facial landmark

localization method, up to 194 green facial landmarks can be located
as shown in green in Fig. 4. For intensity estimation, 11 landmarks are
reserved while three extra points are added which are the mouth center
point 12, lower eyelid center point 13 and 14. All the employed
landmarks are shown in red as depicted in Fig. 4.

3.2. New definition of smile intensity

In [2], it has been shown that the timing of spontaneous and posed
smiles is different. Instead of dividing time axis into equal length [47],
a temporal segmentation method according to smile phases (rise,
sustain and decay) is employed, which is defined by M. Hoque et al.
to better analyze smile dynamics [48]. And, this segmentation method
is proved to be more reasonable for smiles often have a sustained
region with multiple peaks, thus there is often not one clear apex or
peak to the smile.

In work [27], smile temporal phases are segmented only according
to the intensity of lip corner movements. However, movements of lip
corners (point 10 and 11), cheek centers (point 7 and 8) and eyelid
centers (point 2, 5, 13, and 14 ) may not rise or decay simultaneously.
With the problem considered, temporal phase segmentation is im-
plemented independently for each facial subregion. Since accurate and
abundant facial landmarks have been localized in each frame, the
intensity of lip corner movement is defined as follows:

t
d p p d p p
d p p d p p

( ) =
( , ) + ( , )
( , ) + ( , )lip

t t t t
12 10 12 11

12
1

10
1

12
1

11
1

(4)

where pi
t is the location of the i-th landmark in the t-th frame and d (·)

denotes the Euclidean distance. Therefore, the longest continuous
increase of lip is defined as the rise phase for mouth region while
the longest decrease of lip the decay phase. The sustain phase for
mouth region is between the last frame of the rise phase and the first
frame of decay phase. Similarly, the amplitude of eyelid movement and
cheek center movement are respectively computed by:

t
d p p d p p
d p p d p p

( ) =
( , ) + ( , )
( , ) + ( , )eyelid

t t t t
2 13 5 14

2
1

13
1

5
1

14
1

(5)

t
d p p d p p
d p p d p p

( ) =
( , ) + ( , )
( , ) + ( , )cheek

t t t t
9 7 9 8

9
1

7
1

9
1

8
1

(6)

The temporal segmentation for cheek region is similar to mouth
region, where the longest continuous increase of cheek is defined as the
rise phase for cheek region and the longest decrease of cheek the decay
phase. The sustain phase for cheek region is between the last frame of
the rise phase and the first frame of decay phase. However, the eye
region is different from both mouth and cheek region as the eye
aperture becomes small with the increase of smile intensity, especially

Fig. 3. Illustration of the regression function. A regressor function has n stages, and
each stage contains k primitive regressors. The guess shape is refined by all primitive
regressors in a cascaded manner.

Fig. 4. Applied landmarks for intensity estimation and geometric feature extraction.
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in the sustain phase. Therefore, the rise phase for eye region is defined
as the longest continuous decrease of eye while the decay phase the
longest increase of eye. The sustain phase for eye region is between the
last frame of the rise phase and the first frame of decay phase. Fig. 5
shows the intensity and temporal segmentation for each facial sub-
region, which verifies that the same temporal phase for eye, cheek and
mouth region may happen in different time.

3.3. Geometric features

With the derived landmarks and our newly defined amplitude/
intensity of each facial subregion, geometric features can be extracted
through the calculation proposed in [27]. Specifically, five types of
geometric features are extracted which are amplitude related, ampli-
tude/duration related, duration related, speed related and acceleration
related. For example, the amplitude related involves amplitude ratio,
max amplitude, STD amplitude, total amplitude and net amplitude.
Speed is the first derivative of amplitude about time while acceleration
is the second derivative of amplitude about time. Duration is computed
by dividing occupied frames with frame rate. All detailed calculation
formulas can be referred in [6].

4. SVP smile recognition

For SVP smile recognition, to catch hold of robust and discrimina-
tive features is a key step. In [27], a set of geometric feature is
proposed, which shows effective and favorable results. Geometric
features represent facial landmark displacements, curvature changes
of lips and eyelids, size of eyes, etc. Alternatively, appearance features
characterize texture information brought by facial muscle movements
like eye corner wrinkles, which is an indispensable and non-substitu-
table element. Therefore, we focus on exploring a set of texture or
appearance-based feature, which can be combined with the sophisti-
cated geometric features to make the recognition more accurate.

4.1. Division in spatiotemporal domain

As our proposed appearance feature by improving completed
LBP from three orthogonal planes (CLBP-TOP) is a local descrip-
tor, global information is absent. To overcome the limitation, the
whole image sequence is usually equally divided into blocks in both
spatial and temporal domain. As previous studies have shown that
the subregions such as eyes play important roles for SVP smile
recognition [2,49], flexible facial subregion cropping (FSC) is
applied considering specific facial regions. Besides, it also takes
into account that different subjects' facial organs are of different
sizes and changeable when speech and expressions occur. Since
facial landmarks have been localized, five landmarks (center of eyes
p15, p16, lip corners p10, p11, nose tip p9) are employed to locate
facial subregions as shown in Fig. 6(a). With parameter α1, α2, β1,
and β2 controlling region size according to the prior knowledge of
face proportion, facial subregion volumes illustrated in Fig. 6(b)
can be derived. As the smile intensity for different facial subregions
is defined in the previous section, division in temporal domain for
each cropped subregion is accordingly carried out, i.e., each
subvolume V can be divided into three blocks as shown in Fig. 6(c).

There are several advantages of FSC: 1) subregions of different sizes
tend to gather relevant facial textures and avoid fragmentation of
associated information; 2) subregions are flexible since the cropping is
implemented according to different subjects' organ sizes; 3) some
redundant information could be filtered out such as nose and forehead
which are relatively static.

4.2. Discriminative learning model (DLM)

Motivated by finding the optimal subset of patterns and inspired by
the idea from [50], a discriminative learning model (DLM) containing
three layers is proposed here. Instead of using the original local binary
pattern (LBP), Completed local binary pattern (CLBP) shown good
performance in texture classification is adopted here [51]. Based on
LBP, CLBP computes two other items besides the local difference of
sign (S) which are the local difference of magnitude (M) and central
pixel intensity (C), which can be represented as follows:

CLBPH CLBPS CLBPM CLBPC= [ , , ] (7)

CLBPS and the original LBP are the same, CLBPM and CLBPC compute
the local difference of magnitude and central pixel intensity, respec-
tively. To capture dynamics of the smile process, the purely spatial
descriptor needs to be extended to spatial-temporal domain. In [39],
CLBP-TOP is proposed by extracting CLBP features from three
orthogonal planes. Consider that the feature vector would be very long
if concatenating all the histograms computed by CLBP-TOP on each
divided block. Therefore, the proposed DLM is applied to adaptively
learn effective patterns from the database as illustrated in Fig. 7, which
presents in detail as follows:

Fig. 5. Intensities and temporal phases for different facial regions.

Fig. 6. (a) Facial key points of a subject from UvA-NEMO (b) Cropped subregion
volumes (c) Divided blocks in spatial-temporal domain.
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Algorithm 1. Learning process of DLM.

Layer 1, Feature Robustness: Considering feature robustness of
texture images, the pattern occurrence needs to be paid close attention.
Obviously, frequently occurred patterns of one texture image tend to be
more reliable than rarely occurred ones as the rarely occurred patterns
can be easily interfered by image noise resulting in a sparse histogram
representation. With the above thinking, dominant pattern set is
defined here as the minimum set of pattern types covering δ (0 δ< <
1) of all patterns. Denote pu as the total number of pattern types in the
u-th orthogonal plane (u=1: XY, 2: XT, 3: YT plane ) and Pu ξ, the
number of occurrences of pattern type ξ in the u-th orthogonal plane.

The dominant pattern set of the u-th orthogonal plane Ju is then
calculated as:

J arg J s t
P

P
δ= min . .

∑

∑
≥u u

ξ J u ξ

k
p

u k

∈ ,

=1 ,

u
u (8)

where Ju denotes the number of elements in Ju. Then, the most
frequently occurred patterns in each plane can be preserved for the
operation of the next layer.

Layer 2, Feature Discriminability: In this layer, intra-class
variance is taken into account to improve the discriminative power of
extracted features. Normally, it is desired that examples belonging to
the same class have same dominant pattern set (minimize intra-class
variance) while the dominant pattern set of examples from different
classes have large difference (maximize inter-class variance).
Therefore, intersection of dominant pattern sets is carried out across
all training examples in the same class. Thus, the robust and
discriminative pattern subset Jc learned from class c with nc examples
can be expressed as:

J J= ⋂c
n

n

u
n

=1

c

(9)

where Jnu denotes the dominant pattern set from u-th plane of n-th
example. Specifically, according to Eq. (9), applying CLBP-TOP de-
scriptor, the robust and discriminative pattern subset JSc and JMc with
respect to sign and magnitude component learned from class c with nc
examples can be separately expressed as:

JS JS JM JM= ⋂ = ⋂c
n

n

u
n

c
n

n

u
n

=1 =1

c c

(10)

where JSnu and JMn
u denote the dominant pattern set from u-th

plane of n-th example with respect to sign and magnitude component,
respectively. Commonly, the central pixel intensity component is not
considered for it makes less contribution than the other two compo-
nents [39,51].

Layer 3 Feature Representation: In the previous section, we
divide each image sequence into B blocks in spatial-temporal domain.
To derive the global feature representation, the extracted robust and
discriminative subset Jc in each block B and is then concatenated
together as J J= ⋃Global v

B
c v=1 , , where v denotes the number of blocks.

Fig. 7. Discriminative learning model.
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The learned JGlobal from all classes is then put together as the
reference for feature extraction of testing sets. Algorithm 1 gives the
detail procedure of DLM.

5. Experiments and analysis

5.1. Databases

UvA-NEMO database1 [6] is so far the largest database for genuine
and posed smile recognition, including 597 genuine smile videos and
643 posed ones collected at 50 frames per second with a resolution of
1920×1080 pixels under artificial daylight illuminations. It involves
400 subjects (185 females and 215 males) within an age range from 8
to 76.

SPOS corpus2 [39] consists of both natural color and infrared
videos. Only the onset phase of six basic expressions is recorded with
participants' faces cropped out already. Since we focus on genuine
smile recognition, only the natural color videos of happy expression are
employed here. There are 66 genuine and 14 posed smiles captured
with a resolution of 640 × 480 pixels at 25 frames per second in an
indoor bunker environment involving 7 subjects (3 females and 4
males).

BBC database is from the “Spot the fake smile” test on BBC
website,3 which consists of 10 genuine and 10 posed smile videos
collected with a resolution of 314×286 pixels at 25 frames per second
from 7 females and 13 males.

MMI database4 [52] is not especially collected for SVP smile
recognition. In order to compare with work [27], 74 posed smiles from
30 subjects are directly employed and 120 spontaneous smiles of 15
subjects are selected from 383 manually annotated segments. The
employed subset of the database is denoted by MMI♯. The database is
recorded with two formats: 640 × 480 pixels at 29 frames per second
and 720 × 576 pixels at 25 frames per second.

Segments of UvA-NEMO, BBC, and MMI♯start/end with neutral or
near-neutral spontaneous or posed smile expressions while image
sequences of SPOS only include the onset phase. And some exemplar
frames from UvA-NEMO database are illustrated in Fig. 8.

In the preprocessing of facial landmark regression, a rough face box
is detected, then the landmark is estimated in a coarse-to-fine way.
Next geometric centers of eyes and mouth can be detected. Then the
whole face region is normalized with respect to the positions of eyes on
which FSC is executed. Different original patterns of CLBP with
different radii R=1, 3, and neighboring samples N=4, 8 are tried.
CLBP with R=3, N=8 performs best and is denoted as CLBP 8,3 which is

employed as the basic operator in the following experiments. For
experiments on UvA-NEMO, two-level 10-fold cross validation is
applied: a fold is separated as test set each time, the other 9 folds
are used as training sets with cross validation, parameters are
optimized without using the test set. In this paper, linear SVM is
applied for its simplicity, speed and good performance.

5.2. Evaluation of facial landmarks

To evaluate the performance of our landmark localization, we
report the average error and speed which is measured in frames per
second (fps). Errors are measured as the average landmark distance to
ground-truth, normalized as percentages with respect to interocular
distance [44]. The Helen dataset is employed for the experiment [42].
Here, only the six mouth landmarks are selected to measure the mean
error. As shown in Fig. 9, our method has a rapid convergence speed
without significantly reducing the accuracy, which is much better for
the amplitude calculation.

5.3. Comparison of different spatiotemporal divisions

As to space division, FSC is introduced. And the time division based
on intensity of different facial subregion is also presented. For FSC,
parameters are assigned based on empirical value of comprehensive
facial proportion: α1=α2=0.8, β1=0.6, and β2=0.8. As to time division,
our method divides the temporal phase for each facial subregion using
the corresponding facial subregion intensity, which is denoted as R-S-D
in Table 1. The other two time division methods are considered to
compare with R-S-D. One denoted as r-s-d divides the temporal phase
for different facial regions barely according to the intensity of the
mouth region as introduced in [6,27]. The other equally divides the
temporal phase into several parts.

The experiments are implemented on UvA-NEMO using our
proposed DLM. In Table 1, H H× and T EQUAL indicate dividing
the whole face into H H× equal blocks in the spatial domain and T
equal blocks in the temporal domain. As to H=1, 2, 4, 8, 10 and T=1, 2,
3, the best accuracy rate 85.26% is achieved with H=8 and T=3, which
implies over-dividing and coarse dividing are both undesirable. Over-
dividing makes the statistics of local texture invalid while coarse
dividing can not well construct the global structure. T is equal to 3
when combined with FSC and H is equal to 8 when combined with R-S-
D and r-s-d. FSC performs better than H H× , verifying the mentioned
advantages of FSC. Moreover, FSC alleviates influences brought by
distributions of redundant information to a certain extent. For different
time division methods, R-S-D performs better than r-s-d and T EQUAL
when combined with FSC. This verifies that the temporal phase
segmentation for eye and cheek are different from the lip. In fact,
most of the time, movements in different facial subregions are not
simultaneous. R-S-D properly divides the timing of cropped facial
subregions according to the corresponding intensity while T EQUAL

Fig. 8. Frames from UvANEMO database.

1 [Online] Available http://www.e-nemo.nl.
2 [Online] Available http://www.ee.oulu.fi/gyzhao/.
3 [Online] Available http://www.bbc.co.uk/science/humanbody/mind/surveys/

smiles/.
4 [Online] Available http://www.mmifacedb.eu.
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ignores this point, directly cutting into several blocks in temporal
domain. However, using the time division R-S-D combined with the
space division H H× , the improvement is not very obvious.
Considering equal division in space domain and then applying time
division using R-S-D, the temporal phase of some volumes formed by
H H× can be inaccurately segmented as the time division R-S-D is
based on the corresponding intensity of divided subregion using FSC.

5.4. Effect of rise, sustain and decay

To evaluate the effect of different phases of a smile, the DLM feature
of each phase are used separately. First, SVM is utilized to classify the
feature of each phase individually. Then, the voting strategy is
employed to obtain the final classification rate by fusing results of
classifiers. As shown in Fig. 10, the decay phase shows lower
performance than the other two phase, which is consistent with the
fact that when a smile comes to the decay phase, its intensity may
appear large fluctuations accompanying with subordinate smiles.
Compared to all phases employed R-S-D, the rise phase combined
with sustain phase R-S achieves close performance. From the point of
extracted DLM features, statistics of the number of robust and
discriminative pattern types extracted in the each phase are made. It
is found that the number of robust and discriminative pattern types
extracted in the decay phase are less than the other two phases. And
this may be the essential reason leading to low accuracy in decay phase.

5.5. Comparison with other methods

To evaluate our proposed smile analysis framework, we only need
to evaluate the SVP smile recognition module as the first smile
detection module is evaluated in [4] while the SVP smile recognition
module involves the evaluation of the second smile intensity estimation
module. For SVP smile recognition, our method is compared with the
state-of-the-art methods on four databases with the same experimental
protocols. DLM and CLBP-TOP are implemented with FSC and R-S-D
division.

In Section 3, the state-of-art facial landmark localization method is
introduced, with which the geometric feature (GF) proposed in [6,27]
can be extracted. Considering combining the geometric feature with
our proposed appearance feature DLM, a feature fusion method needs
to be employed. For feature fusion, there are three different fusion
strategies of SVM which are early, mid-level and late fusion.
Concretely, early fusion means that features from each phase and each
classifier are concatenated into one vector and classified by a single
SVM classifier; Mid-level fusion denotes that features of all three
temporal phases are concatenated for each subregion separately, and
the region-based vectors are classified by SVMs; Late fusion individu-
ally classifies features from each phase and subregion. For mid-level
fusion and late fusion, majority voting strategy is employed which
counts the output of each SVM classifier as a single vote and selects the
class winning the most votes. The mid-level fusion is applied here as it
achieves the best performance.

Correct recognition rates are given in Table 2. DLM achieves better
results than CLBP-TOP which validates its discriminative and robust
power. The performance of DLM is slightly better than our previous
work [8], which is mainly due to the updated time division method
based on our new definition of smile intensity. As shown in Table 2, the
fusion of DLM and GF outperforms the others on UvA-NEMO, SPOS,
and MMI, achieving the highest performance of 94.25%, 81.50%, and
91.06% respectively. It also can be observed that the single DLM shows
competitive performance compared to the methods listed below. The
recognition rate on SPOS is lower than the other three since SPOS only
contains the onset phase of smiles. The recognition accuracy on BBC is

Fig. 9. (a) Fast convergence and accurate estimation with no occlusion mechanism and interpolated shape-index feature compares with [44], but has smart restarts compared with [43].
(b) Average error of selected six landmarks in mouth region and speed.

Table 1
Comparison of different space and time division methods using DLM on UvA-NEMO.

Time division Facial region cropping Accuracy (%)

R-S-D FSC 92.03
r-s-d [6,8] FSC 91.40
T EQUAL FSC 87.54
R-S-D H H× 85.87
r-s-d [6,8] H H× 85.03
T EQUAL H H× 85.26

Fig. 10. Evaluation of different smile phases on UvA-NEMO.
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not improved using our approaches which remains 90.00% as the same
as the methods in [6,8,27]. This is due to that BBC and SPOS are of low
resolutions, resulting in insufficiency or deficiency of appearance
features to some extent. In addition, work [27] is an expansion of
work [6], where the recognition accuracy is improved from 87.02% in
[6] to 92.90% in work [27] by adding age group information in the
feature. Normally, the appearance of a human face naturally changes
with the growth of age. Therefore, adding age group features can be
regarded as adding appearance information. This is consistent with the
experimental results that the best accuracy is attained when combing
geometric feature with appearance feature.

6. Conclusions

In this paper, a new comprehensive smile analysis framework is
presented that subdivides the smile analysis problem into a cascade of
smaller tasks which are smile detection, smile intensity estimation and
spontaneous versus posed smile recognition. The work carries forward
our recent work of smile detection in unconstrained scenarios. For
smile intensity estimation, a new definition is presented according to
different facial regions based on the state-of-the-art facial landmark
localization method. For SVP smile recognition, we propose a dis-
criminative learning model devoting to obtaining the optimal subset of
CLBP-TOP. Experimental results show that the recognition rate is
improved using the proposed discriminative learning model, which
confirms its robustness and discriminability. Besides, the temporal
phase segmentation method based on our new defined smile intensity
achieves the best result when comparing with equal temporal division
and division only with single mouth intensity, which verifies the
effectiveness of the proposed smile intensity estimation. Experiments
on four benchmark databases also show our proposed DLM achieves
competitive results compared with the state-of-the-art methods. And
the best performance 94.25% is achieved when combined with the
geometric feature. As the smile expression is recognized in a deep
analytic way in our work, it could raise the possibility of inviting many
new applications in the future.
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