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Short Title of the Article

Highlights
• Help network search landmark positions in a more reasonable region
• Alleviate outliers and duplicate detection problems in fashion landmark estimation by loss function
• Easily applied to many popular CNN models without extra computation during inference
• Introduce the skeleton-like characteristic of fashion landmarks to strength the position constraint
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ABSTRACT
Fashion landmark estimation aims at locating functional key points of clothes, which has wide
potential applications in electronic commerce. However, due to the occlusion and weak outline
information, landmark estimation occurs outliers and duplicate detection problems. To alleviate
these issues, we propose Position Constraint Loss (PCLoss) to constrain error landmark loca-
tions by utilizing the position relationship of landmarks. Specifically, PCLoss adds a regulariza-
tion term for each landmark to regularize their relative positions, and it can be easily applied to
both regression and heatmap based methods without extra computation during inference. Un-
like existing approaches that propagate landmark information between feature layers by specific
network structures, PCLoss introduces position relations of landmarks in the label space without
modifying the network structure. In addition, we leverage the skeleton-like relation of clothing
to further strengthen position constraints between landmarks. Extensive experimental results
on DeepFashion, FLD and FashionAI demonstrate that our methods can effectively increase the
performance of mainstream frameworks by a large margin. We also explore the effectiveness of
PCLoss on human pose estimation task, and the experimental results on COCO 2017 prove the
generality of our methods on other key point estimation tasks.

1. Introduction
With the rapid development of online commerce, fashion image analysis, such as clothing retrieval[8, 9, 12, 15, 28],

classification[1, 2, 20, 25, 29, 32] and matching recommendation[13, 14, 25], shows great potential in online industry.
However, large deformation and appearance changes in different clothing categories, scales and shapes make fashion
image analysis difficult. To capture shapes and structures of clothes, a more discriminative representation, fashion
landmark, has been proposed to support these high-level applications. Similar to human joints, fashion landmarks are
functional key points defined on clothes, such as the cuff, neckline and waistline. As clothes are non-rigid and have
large deformation, the fashion landmark estimation still remains challenging.

Even with big training data[6, 7, 18, 19, 20, 21, 34] and advanced network architectures, fashion landmark esti-
mation still has several problems: (1) Outliers: the estimator is confused by the high response area of background
or occlusion, resulting in some outliers in the predicted result as shown in Figure 1(a). (2) Duplicate detection: the
estimator repeatedly detects a certain key point due to large deformation or weak outline information in clothing as
shown in Figure 1(b).

There were some researches[3, 5, 29, 33] that attempted to alleviate above problems by leveraging position re-
lationships between landmarks. Cao et al.[3] proposed the concept of Part Affinity Fields (PAFs) to measure the
association of body parts, and used different branches of network to learn heatmaps and PAFs respectively. Chu et
al.[5] designed geometrical transform kernels for the network to capture landmark relations in different feature chan-
nels. Wang et al.[29] designed two fashion grammars to describe landmark relations, and proposed a Bidirectional
Convolutional Recurrent Neural Network (BCRNN) to perform the message passing over the fashion grammars. Yu
et al.[33] proposed layout-graph reasoning layers to introduce structural landmark relationships to the network. These
methods unanimously focused on the optimization of network structures and tried to learn the relations between land-
mark positions at feature level. However, such practices relied on specific network structures, which would limit the
generalization of models and increase the inference complexity.
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Figure 1: Visualization of outliers and duplicate detection problems in fashion landmark estimation. In these images, the
predicted landmarks are indicated by blue dots and the ground truth landmarks by orange dots. In (a), the 3-th point
(labeled by red dotted rectangle) is the outlier among these landmarks. In (b), the 7-th and 8-th points (labeled by red
dotted rectangle) stand for the duplicate detection of the cuff. (Best viewed in color)
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i ii

Figure 2: Visualization of skeleton-like characteristic. (a) The position relationship between landmark i and others. (b)
The skeleton-like structure of fashion landmarks. According to the skeleton-like characteristic, the landmarks can be divided
into two parts as the blue rectangle in the image. After the optimization, the position relationship between landmark i
and other points can be described as (c).

In this paper, we propose a more efficient solution, Position Constraint Loss (PCLoss), which is used to regularize
relative positions of landmarks during training only. Instead of designing a specific network structure to capture land-
mark relations, our method adds a regularization term for each landmark by loss function to correct error points, which
can be easily applied to most popular models without modifying network structures. Previous works mainly supervise
prediction of each key point with L2 or MSE loss directly. PCLoss, instead, constrains relative positions between
points. Concretely, when there exist some landmarks whose relative positions with others are far from normal values,
more penalties will be imposed on them to regularize their locations. With PCLoss, the network will learn to search
for landmark locations in a more reasonable region.

Furthermore, to reduce the influence of pose variation and error points on PCLoss, the skeleton-like optimization is
introduced to the loss function. Since each landmark in PCLoss is associated with all remaining points, once there are
some error points, all landmarks will be affected due to position constraints. To alleviate the situation, we propose the
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skeleton-like structural constrain mechanism to associate the target landmark with only high-related points. According
to skeleton-like features, we can divide fashion landmarks into two parts as shown in Figure 2. In each part, landmarks
satisfy the skeleton-like relation and possess stronger correlations with each other. With skeleton-like optimization,
PCLoss will have more effective position constraints for landmarks.

The contributions of this paper can be summarized as follows: (1) We propose a position constraint loss to alleviate
outliers and duplicate detection problems in fashion landmark estimation, and the loss can be easily applied to many
popular CNN models without extra computation during inference. (2) Inspired by the knowledge of human body
structure, we introduce the skeleton-like characteristic of fashion landmarks to further optimize the position constraint
loss.

To demonstrate the effectiveness of our PCLoss, we apply the loss on some advanced base models, such as Sim-
pleBaselines [30], FPN [16]. What’s more, we evaluate the performance of PCLoss on both regression and heatmap
based methods. Extensive experiments on three large-scale fashion datasets, namely DeepFahsion, FLD and Fash-
ionAI, demonstrate that, our PCLoss can effectively increase the performance of mainstream frameworks by a large
margin. To further explore the performance of PCLoss on other key point estimation tasks, we extend it to human pose
estimation task. The experimental results on COCO[17] 2017 proves that our method has good generality on key point
estimation tasks.

2. Related Work
Fashion landmark estimation: In recent years, fashion image analysis has attracted more and more attention.

In particular, some large-scale fashion datasets[18, 19, 34] such as DeepFashion[20], DeepFashion2[6], FLD[21] and
FashionAI[7] have been proposed, which further promote the development of fashion image analysis. Fashion image
analysis includes several tasks, such as clothing detection[4, 6, 34], retrieval[8, 9, 12, 15, 28], classification[1, 2, 25, 32],
landmark estimation[21, 29, 31] and so on. Among these tasks, fashion landmark estimation is a more fine-grained
work, which focuses on the shape and structure of clothing. The methods of fashion landmark estimation can be
divided into two categories: regression based methods and heatmap (a confidence map of positional distribution for
each landmark) based methods. Models based on regression methods are differentiable, which can directly regress the
coordinate of each landmark. Liu et al.[21] used a cascade network to regress landmark positions, and the coordinates
would be refined by each stage of the network. Yan et al.[31] designed a spatial transformer network based on regression
methods to solve the environmental influence on landmark estimation. While in recent studies, researchers preferred
the heatmap[22, 27] based methods which are able to capture more spatial information than regression based methods.
Wang et al.[29] used an attention model to output the heatmap results for landmarks. Huang et al.[11] designed aMatch
R-CNN (based on Mask R-CNN[10]) to estimate heatmaps. As our position constraint loss utilizes the coordinate
information to calculate relative positions for landmarks, it can be easily applied to regression based methods. To suit
heatmap based methods, we use the integral operation[26] to calculate the landmark coordinates first, then apply our
position constraint loss.

Key points correlation models: Many researches attempted to utilize the position relationship between key points
to help the network learn more reasonable features. Cao et al.[3] proposed a two-branch network to study heatmaps
and Part Affinity Fields (describe the correlation of different body parts), respectively. As Chu et al.[5] found that body
joints had their own feature channels, they designed a bi-directional tree to propagate the information between them.
Similar with this, Wang et al.[29] introduced two fashion grammars to describe landmark relations and embedded
BCRNN units into the CNN model to simulate the message passing over fashion grammars. Yu et al.[33] designed
layout-graph reasoning layers to leveraging the landmark relationship for structural results. All these researches tried
to utilize specific network structures to capture the position relationship between key points. However, such solutions
will bring more inference overhead. In this paper, we attempt to solve the problem from a new perspective, introducing
the positional correlation of key points by using a simple position constraint loss. Moreover, inspired by the researches
[5, 29], which passed the messages over feature maps according to a specific structure, we apply the skeleton-like
characteristic in PCLoss to further enhance the position constraint of the loss function.

3. Position Constraint Loss
In this paper, we evaluate the effectiveness of PCLoss in two kind of methods: regression based methods and

heatmap based methods. The overall pipeline of our framework is illustrated in Figure 3. On both regression and
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Figure 3: Pipeline of our method. The upper branch (denoted in pink) shows the pipeline of heatmap based methods and
the bottom branch (denoted in blue) is the pipeline of regression based methods. In regression based methods, we can
obtain the landmark coordinates directly. While in heatmap based methods, the network will output the heatmap result for
each landmark and we need to infer their coordinates by integral operation. (a) The original position correlations between
landmarks in PCLoss. (b) The position correlations after skeleton-like optimization. (Best viewed in color)

heatmap based models, landmark coordinates should be acquired first. In regression based models, landmark coordi-
nates can be obtained from outputs directly. While in heatmap based models, we need to infer landmark coordinates
from heatmap results first. Then, the coordinates can be used to calculate PCLoss. After that, the skeleton-like relation
is employed to strengthen the position constraints between landmarks.

In this section, we will introduce our method from four parts. Firstly, we will describe the coordinate inference
method for heatmap based models. Then, the definition of PCLoss will be given in detail. After that, a skeleton-like
based optimization method will be introduced to PCLoss. Finally, the overall loss function will be described for both
regression and heatmap based methods.
3.1. Coordinate Inference for Heatmaps

In regression based methods, we can easily obtain landmark locations and train position coordinates end-to-end,
while in heatmap based methods, networks output the heatmap result for each landmark instead. Therefore, in heatmap
based models, landmark coordinates should be inferred from heatmaps first for the calculation of PCLoss.

Mainstream methods use maximum likelihood[26] to infer landmark coordinates from heatmaps as
pi = argmax

l
Hi(l) (1)

whereHi represents the heatmap for landmark i. l denotes the location (lx, ly) in the heatmap, and pi is the coordinate
(xi, yi) of the landmark i inferred from the location l with the maximum likelihood.

Although this method can obtain accurate results from heatmaps, it is not differentiable. Therefore, with maximum
likelihood, PCLoss can not be trained end-to-end in heatmap basedmodels. To solve the problem, we adopt the integral
operation[26] to calculate landmark coordinates as

H̃i(l) =
e�⋅Hi(l)∑
l e�⋅Hi(l)

(2)

pi =
H∑
ly=1

W∑
lx=1

l ⋅ H̃i(l) (3)

where H̃i(l) is the heatmap after normalization. The size of heatmap isH ×W . � is the scale factor and set as 0.1 in
this paper. With the integral operation, landmark coordinates are trainable in heatmap based methods.
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Figure 4: Examples of position constraint loss. pi denotes the landmark (xi, yi) and v⃗ij denotes the relative position vector
between landmark pi and pj .

3.2. Definition of Position Constraint Loss
Position Constraint Loss is designed for regularizing relative positions between landmarks. Assume that there are

N landmarks defined on clothes, the goal of fashion landmark estimation is to predict the position Pt for all landmarks
as follow

Pt = {pi, i = 1, 2, ..., N} (4)
As PCLoss pays attention to the position relationship of two landmarks, the relative position vector between landmark
i and j is given by

vij = pj − pi (5)
where i, j ∈ [1, N]. Then, PCLoss for the landmark i can be defined as L2 loss between predicted and ground truth
relative position vector, which is formulated as

Li =
N∑
j=1

(v̂ij − v∗ij)
2 (6)

where v̂ij and v∗ij are the predicted and ground truth relative position vector. Li is the PCLoss for the landmark i.
Therefore, PCLoss for all landmarks Llan can be described as

Llan = {L1, L2,⋯ , LN} (7)
Figure 4 presents two examples of PCLoss. In Figure 4(a), all predicted landmark positions are correct except p̂1,which leads to a large PCLoss. While in Figure 4(b), all predicted landmarks are panned but PCLoss is equal to zero.

From these examples, we can easily find that PCLoss actually regularizes relative positions between landmarks instead
of absolute positions. However, this solution will bring a question: although some landmarks are accurate enough that
no additional penalties are required, their position constraint losses still have large values due to outliers. To alleviate
the problem, we adopt the concept of OHEM[24] algorithm which improves the network performance by dealing with
hard examples. In this paper, we only calculate k max PCLoss in Llan like OHEM. Then, the final PCLoss LPC can
be formulated as

LPC = fk{Llan} (8)
where fk{⋅} is a function that calculates the average of k maxima of the set.

Through PCLoss, the position relationship of landmarks will be taken into account by the network. As a result,
outliers and duplicate detection problems will be mitigated and the network will learn to search for landmark locations
in a more reasonable region.
Meijia Song et al.: Preprint submitted to Elsevier Page 5 of 14
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Figure 5: Visualization of skeleton-like structure. (a) The skeleton-like structure based on the 24 landmark model. (b)
The skeleton-like structure based on the 8 landmark model. According to the skeleton-like characteristic introduced in
§3.2, the landmarks can be divided into two parts. In each part, landmarks satisfy the skeleton-like constraint. Specifically,
on the 24 landmark model, the middle landmarks like front center and crotch will be shared by both parts as shown in (a).

3.3. Optimization Based on Skeleton-Like Relation
Fashion landmarks are similar to human joints, satisfying the skeleton-like and symmetry relations. Since the sym-

metry characteristic is the relation between landmark pairs, it is not suitable for the PCLoss. Therefore, we introduce
the skeleton-like characteristic to further optimize the loss design.

Based on prior knowledge, landmark positions will have large variances when the human pose changes. If we
connect a key point with all landmarks defined on clothes, PCLoss will be too sensitive to the pose variation. To
optimize the position constraints, for a certain landmark, we filter the unimportant points and just connect it with more
relavant landmarks.

As Figure 5, we divide fashion landmarks into two parts and the landmarks from each part satisfy the skeleton-like
relation. After the optimization, each landmark will have a stronger position correlation with others. According to the
skeleton-like relation, we divide fashion landmarks into two parts as follows

Pl = {pl1 , pl2 , … , plM }
Pr = {pr1 , pr2 , … , prM }

(9)

where Pl and Pr are landmark positions in left part and right part, and each part containsM landmarks. The partition
rule is illustrated in Figure 5. Notably, in the structure of 24 landmark models, the middle points, like front center and
crotch, will be shared by two sets.

Then, we reuse Eq. (5)− (7) to calculate PCLoss Lllan and Lrlan for Pl and Pr, respectively. After that, the final
PCLoss after optimization can be formulated as

LPC = fk{Lllan} + fk{L
r
lan} (10)

With skeleton-like optimization, each landmark is only associated with others that satisfy the skeleton-like relation
and the position constraints between landmarks will become stronger. In addition, we have also considered other
strategies to divide landmarks. For example, we have ever divided landmarks into top and bottom part, but it can only
achieve few improvements due to the imbalanced division mode (e.g. when the clothes type is blouse, it only contains
top landmarks and the bottom part is useless). But with skeleton-like strategy, landmarks will be divided into left and
right part, and there will always be valid landmarks in each part in spite of clothes types.
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Figure 6: Visualization of fashion landmark estimation. Our results are labeled by red dotted rectangles. (Best viewed in
color)

3.4. Overall Loss Function
In this paper, we evaluate the effectiveness of PCLoss in two kind of models: regression based models and heatmap

based models. In regression based models, the L2 loss and PCLoss are both used to train the network as
Lreg = �r ⋅ L2(p̂, p∗) + �r ⋅ LPC (p̂, p∗) (11)

where the L2 loss is used to measure the distance between the predicted landmark coordinate p̂ and the ground truth
landmark coordinate p∗, and the LPC is the position constraint loss proposed in this paper. �r and �r are the balancingweights of the two losses.

Similar to the Lreg , heatmap based methods adoptMSE and PCLoss to train the network as
Lℎeat = �ℎ ⋅MSE(ℎ̂, ℎ∗) + �ℎ ⋅ LPC (p̂, p∗) (12)

where theMSE loss is applied to calculate the error between the predicted heatmap ℎ̂ and the ground truth heatmap
ℎ∗. �ℎ and �ℎ are the balancing weights in Lℎeat.Notably, since PCLoss is larger than L2 loss and MSE loss, the hyper parameters �r and �ℎ should be smaller
than �r and �ℎ to keep balance.
Meijia Song et al.: Preprint submitted to Elsevier Page 7 of 14
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Table 1
Comparison results on the DeepFashion dataset with Normalized Error

Model L.Collar R.Collar L.Sleeve R.Sleeve L.Waist R.Waist L.Hem R.Hem NE (avg.)

FashionNet[20](reg) 8.54% 9.02% 9.73% 9.35% 8.54% 8.45% 8.12% 8.23% 8.75%
DFA[21](reg) 6.28% 6.37% 6.58% 6.21% 7.26% 7.02% 6.58% 6.63% 6.62%
DLAN[31](reg) 5.70% 6.11% 6.72% 6.47% 7.03% 6.94% 6.24% 6.27% 6.44%

Ours+FashionNet 2.33% 2.40% 4.00% 4.17% 5.81% 6.01% 2.13% 2.20% 3.63%

FGN[29](heat) 4.15% 4.04% 4.96% 4.49% 5.02% 5.23% 5.37% 5.51% 4.85%
FPN[16](heat) 2.19% 2.19% 3.28% 3.31% 4.81% 4.87% 2.09% 2.11% 3.11%
SPB[30](heat) 2.07% 2.10% 3.18% 3.13% 4.83% 4.83% 1.75% 1.77% 2.96%
Ours+FPN 2.04% 2.05% 3.18% 3.19% 4.72% 4.81% 1.90% 1.96% 2.98%
Ours+SPB 2.03% 2.06% 3.00% 3.04% 4.64% 4.75% 1.50% 1.53% 2.82%

Our methods are marked in bold and lower values are better. The label ’reg’ means the model is based on regression
methods, and ’heat’ means the model is based on heatmap methods.

Table 2
Comparison results on the FLD dataset with Normalized Error

Model L.Collar R.Collar L.Sleeve R.Sleeve L.Waist R.Waist L.Hem R.Hem NE (avg.)

FashionNet[20](reg) 7.84% 8.03% 9.75% 9.23% 8.74% 8.21% 8.02% 8.93% 8.59%
DFA[21](reg) 4.80% 4.80% 9.10% 8.90% − − 7.10% 7.20% 6.98%
DLAN[31](reg) 5.31% 5.47% 7.05% 7.35% 7.52% 7.48% 6.93% 6.75% 6.73%

Ours+FashionNet 3.86% 3.94% 7.46% 7.38% 7.70% 7.65% 5.00% 4.95% 5.99%

FGN[29](heat) 4.63% 4.71% 6.27% 6.14% 6.35% 6.92% 6.35% 5.27% 5.83%
FPN[16](heat) 2.83% 2.89% 5.19% 5.22% 6.60% 6.57% 4.73% 4.50% 4.82%
SPB[30](heat) 2.88% 2.89% 5.11% 5.20% 6.53% 6.28% 4.48% 4.37% 4.72%
Ours+FPN 2.83% 2.84% 5.21% 5.17% 6.56% 6.49% 4.31% 4.30% 4.71%
Ours+SPB 2.86% 2.84% 5.01% 5.05% 6.44% 6.28% 4.18% 3.95% 4.58%

Our methods are marked in bold and lower values are better. The label ’reg’ means the model is based on regression
methods, and ’heat’ means the model is based on heatmap methods. ’−’ denotes the detailed results which are not

released.

4. Experiments and Analysis
In this section, we evaluate the performance of our PCLoss on three large datasets, DeepFashion, FLD and Fash-

ionAI. Firstly, we will introduce the information of datasets and describe the details of implementation. Then, the
experimental results and analysis based on regression and heatmap methods will be given. After that, extensive abla-
tion studies are performed to demonstrate the effectiveness of different modules. Besides, We extend PCLoss to human
pose estimation task.
4.1. Datasets

DeepFashion[20] contains three subsets for different benchmarks and we choose the largest one (subset for Cat-
egory and Attribute Prediction) to evaluate the performance of fashion landmark estimation. The DeepFashion is the
largest one among the three datasets. It contains 289,222 images, which are taken under various scenarios. Each image
from DeepFashion has rich annotations, including category, bounding box, visibility and 8 landmarks. Following the
dataset setting, the training, validation and testing set have 209,222, 40,000 and 40,000 images, respectively.

FLD[21] is a dataset specifically designed for fashion landmark estimation, which contains 123,016 clothes images.
Similar to DeepFashion, each image of FLD is also annotated with category, bounding box, visibility and 8 landmarks.
Following dataset setting, there are 83,033, 19,992 and 19,992 images for training, validation and testing.

FashionAI[7] is a competition dataset proposed byAlibabaGroup. It has rich landmark annotations that each image
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Table 3
Comparison results on FashionAI-val dataset with NE

Model NE (avg.)
FashionNet[20](reg) 10.17%

Ours+FashionNet[20] 9.71%

FPN[16](heat) 4.12%
SPB[30](heat) 4.10%
Ours+FPN 3.91%
Ours+SPB 3.90%

Our methods are marked in bold and lower values are better. The label ’reg’ means the model is based on regression
methods, and ’heat’ means the model is based on heatmap methods.

is annotated with category, visibility and 24 landmarks. The FashionAI dataset covers 5 women clothing categories
and has 104,088 clothes images. Since there is not validation set in FashionAI, we build the validation set by selecting
the previous 2,100, 1,900, 1,900, 2,100 and 2,000 images from the blouse, outwear, dress, skirt and trousers category in
training set. After that, there are 66,866, 10,000 and 27,222 images in training, validation and testing set, respectively.
4.2. Experiment Settings

Evaluation Metrics. Following the common practice[7, 21, 29], we adopt Normalized Error (NE)[21] as our
evaluation metrics. NE is the average normalized distance between predicted landmark position and ground truth
position as formulated as

NE =

N∑
i=0

1
Ti

√
(p̂i − pi∗)2 ⋅ vi

N∑
i=0
vi

× 100% (13)

where vi is the visibility of landmark i and Ti is the normalization coefficient.
On DeepFashion and FLD, the coefficient T is the width of the image. But on FashionAI, T is the Euclidean

distance between a specific pair of landmarks defined on FashionAI (for blouse, outwear and dress, they are two
armpit points; and for trousers and skirt, they are two waistband points).

Training Details. Our experiments are implemented based on Pytorch framework. We use Adam optimizer over 4
GPUs with a total of 20 images per minibatch (5 images per GPU). We train the network for 100k and 150k iterations
with an initial learning rate of 0.0003, which is divided by 3 at 30k and again at 50k iterations. Before training, the
images from DeepFashion and FLD are cropped by bounding box and all images from three datasets are resized to
512×512. Data augmentation such as scale (±25%), rotation (±30◦) and flip, are also applied in training. We calculate
the top 8 PCLoss on FashionAI, and top 4 PCLoss on DeepFashion and FLD dataset.
4.3. Performance Evaluation

DeepFashion and FLD dataset. To demonstrate the effectiveness of our PCLoss, we apply it to two kind of
models: regression based models and heatmap based models. As shown in Table 1 and Table 2, FashionNet[20],
DFA[21] and DLAN[31] are all the regression based models, while FGN[29], FPN[16] and SPB(Simplebaselines)[30]
are the heatmap based models. To test the performance of PCLoss on regression based methods, we apply our PCLoss
to FashionNet model, which is the baseline proposed in DeepFashion dataset. Besides, we train the FPN and SPB
network by our PCLoss to examine the effectiveness of the loss on heatmap based methods. The comparison results
on DeepFashion and FLD dataset are presented in Table 1 and Table 2. From the table, we can easily find that, on
both model types (regression based and heatmap based models), our position constraint loss can effectively improve
the location accuracies of networks.

FashionAI dataset. Since FashionAI is a competition dataset, the ground truth annotations from testing set are
not released. Therefore, we use the validation set divided in §4.1 to better compare the performance between different
models. On FashionAI dataset, we apply our PCLoss to three deep models, including FashionNet[20], FPN[16] and
Meijia Song et al.: Preprint submitted to Elsevier Page 9 of 14
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Table 4
Ablation studies on FashionAI validation dataset

Model PCLoss Skeleton-like Top-bottom NE (avg.) △

FashionNet - - - 10.1724% 0.4646%
FashionNet ✓ - - 9.8295% 0.1217%
FashionNet ✓ ✓ - 9.7078% -

FPN - - - 4.1219% 0.2109%
FPN ✓ - - 3.9646% 0.0536%
FPN ✓ - ✓ 3.9597% 0.0487%
FPN ✓ ✓ - 3.9110% -

△ denotes the difference value between our methods (marked in bold) and the others.

SPB(Simplebaselines)[30], as illustrated in Table 3. The FashionAI is the most challenging one among the three
datasets due to more landmark annotations and lack of bounding boxes. As FashionAI dataset has 24 landmarks to
predict, it is more likely to encounter the outliers and duplicate detection problems. Therefore, the position constraints
between landmarks can play a greater role on FashionAI. Compared with the results on DeepFashion and FLD dataset,
PCLoss can lead to greater performance gains on FashionAI. However, as regression based methods are hard to deal
with the more landmark estimation problem due to lack of spatial information, the result of FashionNet on FashionAI
is worse than DeepFashion and FLD. In Figure 6, we present some picture results on FashionAI. From results, we can
find that PCLoss can help the network search landmark positions in a more reasonable region, and effectively mitigate
the influence of occlusion and weak outline information.
4.4. Ablation Study

To demonstrate the merits of each component in PCLoss, ablation studies are performed in this subsection. The
experimental results are summarized in Table 4.

Effectiveness of position constraint loss and skeleton-like optimization. To prove the effectiveness of our
PCLoss and skeleton-like optimization method, we perform the experiments on the validation set of FashionAI and the
results are presented in Table 4. We evaluate our method on both regression based model (FashionNet) and heatmap
based model (FPN). From the results, we can find that even the original PCLoss (without skeleton-like optimization) is
able to promote the network performance by 0.3429% (FashionNet) and 0.1573% (FPN). Then we apply the skeleton-
like optimization to the loss, and the accuracies can be further promoted by 0.1217% (FashionNet) and 0.0536% (FPN).

PCLoss optimization with different division modes. Skeleton-like strategy is an optimization method to help
PCLoss obtain better results without extra annotations. Besides skeleton-like strategy, there are still have other division
modes that can strengthen the constraint of PCLoss. In this experiment, we compare the top-bottom strategy with
the skeleton-like strategy to explore the influence of different division modes. In the top-bottom strategy, we divide
landmarks into top and bottom parts. As shown in Table 4, top-bottom strategy can bring few improvements for PCLoss
due to the imbalanced division mode. Specifically, as Figure 7 shows, when the clothes type is blouse, the top part
includes all visible landmarks and the bottom part is useless. But with skeleton-like strategy, landmarks will be divided
into left and right parts, and both parts will have valid landmarks in spite of clothes types. Therefore, skeleton-like
strategy is a more balanced division mode compared to other strategies.

Selection of loss weights. As Eq. (11) and Eq. (12), we use the multi-loss to train the network. In the paper, we
set the �r = �ℎ = � = 1 and �r = �ℎ = �. As the value of position constaint loss is larger than L2 andMSE loss,
the LPC loss weight � should be smaller than � to keep balance. In Figure 8, we show the network performance in
different values of �. According to the experiments, we set the � = 2 × 10−4 on FashionAI dataset, and � = 1 × 10−5
on DeepFashion and FLD dataset.
4.5. Timing

Since PCLoss improves the network performance through loss function, it will not bring extra time consumption
during inference. PCLoss is also fast to train. The calculation of PCLoss using 1-GPU (20 images per mini-batch) on
FashionAI only takes 2.433 milliseconds. Therefore, PCLoss is an efficient way to increase the locating accuracy for
key point estimation tasks.
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Figure 7: Comparison between different division modes.

Figure 8: Comparison of the loss weight � on the DeepFashion, FLD and FashionAI dataset.

4.6. PCLoss for Human Pose Estimation
PCLoss is designed to help the network regularize key point positions, therefore, it can easily be extended to

other key point estimation tasks. In this section, we apply PCLoss to human pose estimation. We use FPN[16] and
SPB(Simplebaselines)[30] as base models to examine the effectiveness of PCLoss. All models are trained on the
COCO train2017 dataset and tested on the COCO val2017 dataset. For detection, we use a faster-RCNN[23] detector
with detection AP 56.4 for the person category on COCO val2017 as [30]. As presented in Table 5, PCLoss can
effectively improve the performance of human pose estimation task, which proves the generality of our methods.

5. CONCLUSIONS
In this paper, we design a Position Constraint Loss (PCLoss) for fashion landmark estimation, which incorporates

the position correlation into landmark estimation models. Specifically, the PCLoss adds a regular term for each land-
mark to regularize their relative positions. Compared with other alternatives, our PCLoss effectively mitigates the
outliers and duplicate detection problems without modifying existing CNN architectures. In addition, our skeleton-
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Table 5
Comparison results on COCO val2017 dataset

Model Input Size AP
FPN[16] 256 x 192 69.9
SPB[30] 256 x 192 70.4

Ours+FPN 256 x 192 70.6
Ours+SPB 256 x 192 70.7

Our methods are marked in bold and higher values are better.

like optimization method further strengthens the position constraints between landmarks. The proposed method can
be applied to both regression and heatmap based methods and it provides a novel perspective towards position relation
learning in key point estimation tasks. Extensive experimental results on three challenging datasets, DeepFashion,
FLD and FashionAI, demonstrate that our method outperforms other state-of-the-art methods. The experiment on
COCO 2017 shows the potential applications of PCLoss for other key point estimation tasks, which can be explored
more in future work.
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