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Image-to-video person re-identification (I2V RelD), which aims to retrieve human targets between image-
based queries and video-based galleries, has recently become a new research focus. However, the appear-
ance misalignment and modality misalignment in both images and videos caused by pose variations,
camera views, misdetections, and different data types, make 12V RelD still challenging. To this end, we
propose a deep 12V RelD pipeline based on three-dimensional semantic appearance alignment (3D-SAA)
2010 MSC: and cross-modal interactive learning (CMIL) to address the aforementioned two challenges. Specifically, in
68T10 the 3D-SAA module, the aligned local appearance images extracted by dense 3D human appearance es-
638U10 timation are in conjunction with global image and video embedding streams to learn more fine-grained
identity features. The aligned local appearance images are further semantically aggregated by the pro-
posed multi-branch aggregation network to weaken the negligible body parts. Moreover, to overcome the
influence of modality misalignment, a CMIL module enables the communication between global image
and video streams by interactively propagating the temporal information in videos to the channels of
image feature maps. Extensive experiments on challenging MARS, DukeMTMC-VideoReID and iLIDS-VID
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datasets, show the superiority of our approach.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Person re-identification (RelD) as a key component in multi-
camera multi-target tracking, plays an important role in intelligent
surveillance [1-3] and video analysis [4]. In recent years, abun-
dant approaches have been proposed to address person RelD under
the same modality, like image-based person RelD [5-8] and video-
based person RelD [9-13]. Despite the best efforts of many re-
searchers, existing person RelD methods under the same modality
still can not be well applied to person RelD under different modali-
ties, such as the identification between the image-based query and
video-based gallery.

Image-to-video person re-identification (I2V RelD), is proposed
to address problems mentioned above. In real scenarios, if only a
single photo (query) of the criminal is captured, it is challenging
to search the criminal among lots of surveillance videos (gallery).
The main reason is the uncertainty of data due to the appearance
and modality misalignment, as shown in Fig. 1. These two mis-
alignment problems increase the intra-class variations, and make
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the existing single modality based RelD methods unable to be di-
rectly applied to 12V RelD task. It is well-known that the appear-
ance information [5] and motion information [14] are crucial cues
to identify persons in real surveillance scenarios. Therefore, how to
integrate the rich temporal motion information in videos and spa-
tial appearance information in images has become the focus of 12V
RelD.

An intuitive solution to 12V RelD is to map both images and
videos into the same compact feature space for the subsequent
matching. Existing approaches generally utilize a Convolutional
Neural Network (CNN) [16,17] based model to represent the ap-
pearance features of images, and a Long Short-Term Memory
(LSTM) [16] / 3DCNN [18] |/ Non-Local CNN [19] model to learn
spatio-temporal features from videos. Afterwards, a well-designed
distance metric function is used to measure the difference among
different identities or modalities. These solutions promote the im-
provement of 12V RelD, but still cannot completely solve the ap-
pearance and modality misalignment problems.

More specially, some researchers focus on extracting body part
features based on human 2D joints to enhance the discrimina-
tion ability of learned features [20]. That is a good choice to in-
troduce local features to 12V RelD. However, the 2D joints only
roughly reflect the 2D center coordinates of key human body re-
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Fig. 1. Illustration of appearance and modality misalignment challenges in 12V RelD
task. The appearance cues in the same video clip are sensitive to human pose vari-
ations, camera view variations and misdetections. We call this problem that affects
the appearance of human as appearance misalignment. Moreover, the gallery videos
in 12V RelD contain rich temporal motion information and appearance information,
while the query images contain only appearance information. This kind of modality
gap between images and videos in 12V RelD is called as modality misalignment. All
the examples are selected from the MARS dataset [15].

gions, which is not helpful to obtain detailed 3D surface informa-
tion of the human body, especially in the case of similar poses
[21]. Inspired by the work [22], the more dense human 3D sur-
face information is crucial to learn discriminative semantic features
against appearance misalignment. Others dedicate to further min-
imize the distance between image and video modalities by intro-
ducing proxy text space [23], unsupervised domain adaption [18],
temporal knowledge propagation [19], or self-attention mechanism
[24]. Although these attempts are effective, they either need to in-
troduce additional feature space, or force the two modalities to
be unified into one. The image and video modalities in 12V RelD
should be able to interactively communicate with each other while
retaining the unique property of each modality.

In this paper, we aim to develop a more generalizable 12V RelD
pipeline against the challenges mentioned above. The proposed 12V
RelD pipeline contains two key components, three-dimensional se-
mantic appearance alignment (3D-SAA) and cross-modal interac-
tive learning (CMIL) module. Given the query images and gallery
video clips, all query images and gallery frames in videos are fed
into dense 3D human appearance estimation part in the 3D-SAA
module to extract aligned local appearance images. Owe to the
unified 3D human parametric model, the body parts in all query
images and gallery frames are implicitly aligned. The extracted
aligned local appearance images are further weighted and seman-
tically aggregated to highlight more distinguished foreground tex-
ture parts by multi-branch aggregation network (MBAN) in the 3D-
SAA module. The raw video clips, query images, and aligned local
appearance images are simultaneously utilized to learn deep iden-
tity feature embeddings. Due to the diverse characteristics of dif-
ferent modalities, the image features contain rich semantics of ap-
pearances of target person, while the video features contain abun-
dant temporal information. To this end, the CMIL module is pro-
posed to interactively propagate modality-specific knowledge be-
tween two modalities. With the help of an interactive similar-
ity comparison mechanism, the relation between image and video
modalities is constructed, and is integrated into the channels of
image features for the joint learning of two modalities.

Generally, our contributions are three-fold:

e A deep I2V RelD pipeline with two key components, three-
dimensional semantic appearance alignment (3D-SAA) and
cross-modal interactive learning (CMIL), is proposed to learn
fine-grained and temporal invariant features, which achieves
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superior performances than the compared baseline method on
MARS, DukeMTMC-VideoRelD and iLIDS-VID datasets.

To address the problem of appearance misalignment, a 3D-
SAA module with proposed multi-branch aggregation network
(MBAN) is designed to semantically align different body parts
of human in the dense 3D human surface space, weaken the
influence of negligible body parts, and aggregate different body
parts into a unified appearance feature embedding.

To address the problem of modality misalignment, a CMIL mod-
ule is developed to construct the relation between two modal-
ities with an interactive similarity comparison mechanism, and
integrate the relation into the channels of image features for
the interactive learning of two modalities.

The remainder of this paper is organized as follows. The re-
lated work is reviewed in Section 2. Section 3 clarifies the defini-
tion of 12V RelD and introduces the proposed pipeline with 3D-SAA
and CMIL modules in detail. Experimental results and analysis are
shown in Section 4, and Section 5 concludes this work.

2. Related work
2.1. Image-to-video person re-identification

Compared with single modality based person RelD tasks, like
image-based person RelD [1,3] and video-based person RelD [9-
13], 12V RelD indeed belongs to a cross-modal retrieval task be-
tween images and videos. Zhu et al. [25] and Li et al. [26] adopted
heterogeneous dictionary pair learning and salient region cluster-
ing approach to tackle this task in a traditional manner, respec-
tively. With the advance of deep learning, Zhang et al. [17] and
Wang et al. [16] mapped raw images and videos to the learned het-
erogeneous deep feature space, and supervised the learning pro-
cess by deep distance metrics. Specifically, Zhang et al. [17] utilized
CNN to extract the features of images and frames of videos, and in-
tegrated frame-level features into a video-level feature with LSTM
model. Wang et al. [16] also mapped images and frames of videos
by CNN, and they designed a k-nearest neighbor triplet loss to con-
strain the relations between image-level features and frame-level
features across different identities. To further map different modal-
ities into a unified feature space, Xie et al. [23] extra introduced
an immediate text space to minimize the heterogeneity between
modalities. Gu et al. [19] enforced the outputs of image representa-
tion network to fit the robust outputs of video representation net-
work with the Mean Square Error. Shim et al. [24] integrated image
embedding and video embedding into a unified feature embedding
with the self-attention mechanism. Porrello et al. [27] devised a
teacher-student training strategy to learn more identity-sensitive
features against camera view variations. In contrast, our method
proposes two key modules to further improve the performance of
12V ReID from the two aspects of solving appearance and modal-
ity misalignment. We focus on learning more fine-grained seman-
tic and temporal invariant features for the 12V RelD task. The 12V
RelD can also be treated as a special case of video-based person
RelD. The video-based person RelD commonly employ the tem-
poral pooling [9,10], optical flow [11], Recurrent Neural Network
[12,13] and 3DCNN [28] to mine the temporal motion information
of identities. In this work, we also aim to make use of the tempo-
ral information in videos, and dedicate to minimize the modality
gap existed in 12V RelD.

2.2. Appearance alignment

Existing methods typically address appearance misalignment
problem by partitioning human images into several parts to ex-
tract more fine-grained local identity features. The partition meth-
ods can be roughly divided into the explicit partition and implicit
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Fig. 2. Overview of the proposed 12V RelD method. There are three main streams in the whole framework, including video, image and appearance embedding streams. These
three streams can transform different kinds of inputs into high-level semantic feature space. Specially, a 3D-SAA module is proposed to generate 24-parts local semantic
appearance images by the 3D-AG part and MBAN. A CMIL module is also designed to interactively propagate knowledge between two modalities in the feature space. The
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partition. The explicit partition leverages extern cues, such as 2D
human pose estimation [20], uniform partition [5], and dense hu-
man surface [29]. Yu et al. [20] proposed a cross-media body-part
attention network for 12V RelD by extracting the cross-modal body
part attention features based on the 2D poses of person. Sun et al.
[5] proposed a strong baseline which partitions the raw global hu-
man images into several uniform stripes to explicitly align body
parts of persons. Compared with [20] and [5], our work can cap-
ture more detailed local appearance information of persons based
on the human 3D parametric model. Zhang et al. [29] also utilized
the 3D surface of human to align human body parts for image-
based person RelD task. Compared with [29], the proposed 3D-SAA
module adopts different part-level feature aggregation manner, dif-
ferent multi-grained identity feature learning method and the cru-
cial body parts selection component.

The essential core of implicit partition is to highlight fore-
ground human body parts with the attention mechanism [7,8,30].
Yao et al. [8] designed a part loss network to highlight a crucial
body region and ignore other body regions. Zhao et al. [30] pre-
sented a part-aligned representation learned only from person
similarities without the supervision information about the human
parts. Although these methods generally perform better than the
explicit partition based methods, they still focus on the 2D appear-
ance information rather than more detailed 3D information. Our
work not only can capture aligned 3D local information of persons
but also can weaken the cluttered backgrounds and negligible body
parts with the merits of implicit partition.

2.3. Modality alignment

Cross-modal human target analysis, such as RGB-infrared Per-
son RelD [31-33], RGB-D cross-modal person RelD [34], and NLP-
based person search [35,36], has been widely developed recently.
The RGB-infrared person RelD task is utilized to realize the all-day
person re-identification, and the RGB-D cross-modal person RelD
task is proposed to ensure the privacy of pedestrians. These cross-
modal tasks make person RelD easier to apply to the real scenarios.
Compared with these cross-modal RelD tasks mentioned above, the
12V RelD task utilizes the same sensor to capture images or videos
as inputs. The modality differences in 12V RelD are less than other
cross-modal person RelD tasks, but the 12V RelD task is more prac-
tical and flexible in the wild. Although [19] and [24] provide the
solutions to address the modality gap in the 12V RelD task, we pro-
pose a more effective interactive communication manner between
images and videos. By integrating the relation between two modal-

are jointly trained by Lrkp, identification-based loss Ly, Lig 4, and verification-based 10ss Ly, Ly are, Laov. (Best viewed in color)

ities into the channels of image features and jointly learning with
two embedding streams, the CMIL module can realize the commu-
nication between two modalities.

3. The proposed method

This section introduces the proposed deep 12V RelD pipeline to
address the appearance and modality misalignment. First, the pro-
posed whole pipeline is introduced and the relation between pro-
posed different components are illustrated. Then, a 3D-SAA mod-
ule is designed to align different instances of the same identity by
mapping to the unified 3D parametric surface model to address the
appearance misalignment problem. Finally, a CMIL module is de-
veloped to construct the relation of two modalities with an inter-
active similarity comparison mechanism, and integrate the tempo-
ral information of videos to the image features for the joint learn-
ing of two modalities.

3.1. The proposed 12V RelD pipeline

Problem Formulation: The 12V RelD belongs to the retrieval
task, which needs to match pedestrian candidates between query
and gallery set. In contrast to the same modality-based person
RelD tasks, the 12V RelD needs to deal with heterogeneous data,
eg. query images and gallery videos. Given a query image I; and a
gallery V; = {Vg"|i €[1,2,..., L]} with L videos, the goal of 12V RelD
is to compare with gallery videos V; based on the identity infor-
mation in query image Iy, and return a ranked similarity score list
Srank = {siank|i €[1,2,...,L]}. To achieve this goal, it is crucial to ex-
tract accurate fine-grained human appearance features as identity
information and address the heterogeneity between images and
videos. In this work, we propose a 3D-SAA module and a CMIL
module to further improve the generalization ability of the 12V
pipeline from these two aspects mentioned above.

Overview of Proposed Deep 12V RelD Pipeline: The proposed
deep 12V RelD pipeline is depicted in Fig. 2. To learn discrimina-
tive identity representations to better match query and gallery in
deep semantic feature space, lots of annotated video clips V;,4in =
{V]."|j e[1,2,...J],ne[1,2,..,N]} are used to train the proposed
deep 12V RelD pipeline. The terms J and N denote the number of
video clips and human identities, respectively. Each video clip Vj”
in Vyqin contains T frames with the same identity, which is formu-
lated as:

V=, 0T e [1,T] (1
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Fig. 3. The architecture of the proposed MBAN. The aligned 24-parts appearance images are transformed into aggregated 3D appearance semantic images with MBAN. The
key components in MBAN, like the convolution block (CB) 1, CB 2, CB 3, mask generation part and, body prior reshape part are shown in Fig. 4.

where, Y, € R>*"># denotes the tth frame in V] e RT>3*W~# and
3, W, H denote the channel number, width and height of I;?t and
V]ﬂ, respectively.

The proposed I2V RelD pipeline has three main streams, a video
embedding stream and an image embedding stream for learning
deep features from two modalities, and an additional appearance
embedding stream. In the training phase, the video clips are fed
into the video embedding stream, and all frames in input video
clips are utilized as a image set {I;.'t} to train the image embed-
ding stream correspondingly. In the video embedding stream, the
ResNet-50 [37] with non-local blocks [38] (Non-Local ResNet-50)
and spatial average pooling (SAP) layer is used to extract frame-
level features due to its ability to capture temporal information.
The extracted frame-level features fi/ e RT*P>1 are further inte-

grated to the video-level feature f"}j e RP>1 by a temporal average
pooling (TAP) [19] layer. The symbol D denotes the number of fea-
ture channels. In the image embedding stream, each sample in {I}’t}
is fed into the ResNet-50 with a SAP layer to learn corresponding
image feature f/ e RT*Dx1,

To further address appearance misalignment problem, this work
proposes a 3D-SAA module to guide the identity feature learning.
For each image I;?, a 3D appearance generation (3D-AG) part is
firstly used to estimate aligned 24-parts appearance image M" e

R3*45%6s of persons. The term s is the width and height of 1-part
appearance images. The estimated 24-parts appearance image is
reshaped in part-level, and then fed into a designed multi-branch
aggregation network (MBAN) to extract aggregated 3D local ap-
pearance semantic image A’ e R3x27x127_The term 7 is the width
and height of 1-part of A'}r' The aggregated 3D local appearance
semantic image A;?t belongs to the same identity as I}’, but A']?t
contains abundant aligned semantic information than I;’t. Similar
to the image embedding stream, the 3D local appearance semantic
image A?r is also fed into the ResNet-50 in the appearance embed-
RT*Dx1 The ap-
pearance feature fA] is further fused with f,’” to obtained more
fine-grained identity features ffused € RT*Dx1,

To close the gap between image and video embedding streams,
a CMIL module is proposed to model relations between two
streams. The outputs of Non-Local ResNet-50 in video embedding
stream and ResNet-50 in image embedding stream, are directly
fed into CMIL module to interactively propagate knowledge of two
modalities, and obtain balanced identity feature f’” e RT*Dx1 The

feature f"f can be used to simultaneously involve the visual infor-
mation in images and temporal information in videos.

ding stream to extract appearance feature f"'

Overall, the learned all features f"}j, ;”', ,"j, "J, ffuSE ;4 men-
tioned above are jointly trained by multiple loss functions

Lig. Lig et Leris Leri_are- Laav. Ltip. as described in Section 3.4.

3.2. 3D semantic appearance alignment

3D Appearance Generation: As shown in Fig. 2, the 3D-SAA
module is used to extract aggregated 3D appearance semantic im-
ages for guiding the proposed 12V RelD model to learn more se-
mantically aligned identity features. For each image I;?[ in the train-
ing phase, it is fed into DensePose model [22] in proposed 3D-AG
part to estimate UV map of persons. The UV map [39] can re-
flect the correspondences between 3D human parametric model
[40] and 2D texture maps. Each pixel in I;.’t can be classified into
24 body parts by DensePose model, and transferred to UV coordi-
nates as follows:

¢* = argmaxcP(c|l} (x, ), (2)

[U.VI=R"((x,y),u=Ulx,yl.v=VIx.yl, (3)

where (x,y) is the Cartesian coordinate of the pixel in
]t,P(c| (x,y)) is the probability of pixel I;?t(x,y) belonging
to the cth body part, and c* is the predicted body part of I;?t x,¥).

A regressor R® is used to transform Cartesian coordinates to UV
coordinates. Based on the UV map and raw color image I;.'t x,¥), a

24 part-level appearance image M can be extracted by:

(TTv)s’ (TTu)s] — € (x.y). (4)
where I¢(x,y) denotes the region of the c*th body part in I?t,
and Y denotes the maximum value of the UV map. With For-
mula (4), we can obtain aligned 24-parts appearance image M’]?t =

{M|c* € [1,24]}, and 24 body parts are well aligned for further
extracting semantic appearance images. The backgrounds of M;?t
are set to the mean value of I?: [29], and 24 parts in M’]?t are ar-
ranged in the size of 6 x 4. From Fig. 2, it can be seen that the
estimated image M?[ is uniformly partitioned into body parts in
3D appearance space. This transform can minimize the influence
by pose variations and other visual interferences.

Multi-Branch Aggregation Network: Although the extracted
appearance image M;?[ by 3D-AG part is aligned along the part-
level, the same attention with more crucial body parts, like head
and torso, is also paid to some negligible body parts and irrele-
vant backgrounds. To this end, a MBAN model is designed to deal
with different body parts, and learn a mask to calculate the impor-
tance of different body parts. The architecture of MBAN is shown in

M|
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Fig. 4. The key components in MBAN. The CB module contains a convolution layer, a batch normalization (BN) layer and a ReLU layer. Specifically, the “Conv 5x5 2_1@3" in
CB 3 denotes the convolution layer with the kernel size of 5x5, the stride of 2, the padding number of 1, and 3 output channels. The meanings of other convolution layers
in MBAN are similar to “Conv 5x5 2_1@3”. The mask generation part contains a convolution layer, a normalization layer and a Softmax layer. The body prior reshape part

shows how the 24 part-level features are concatenated to 6 block-level features.

Fig. 3. Firstly, the aligned 24-parts appearance image M}’t estimated Vdex 2:;{/ map

by 3D-AG part is reshaped to the 24 part-level appearance images Reshap ~

M€, These images are mapped to semantic spaces by convolution 7 4 / b

block (CB) 1, and reshaped to block-level features with body prior GAP | Mean -

reshape part. As shown in Fig. 4, the body reshape part reshapes B o Memory £,

the human body parts in the order of head, torso, arms, legs, hands & / Dx1 17 fop Softm %
and feet from top to bottom. This kind of reshape operation can ﬁ_’/ A.g Txgw

minimize the gap between local appearance images and raw global
color images with the help of the geometric information of hu-
man body structure [41]. Then, after encoding block-level features
by CB 2, all block-level features are concatenated to an image-level
feature P]”t The image-level feature P]”[ is used to generate a mask
<I>(Pj”t) by a mask generation part in Fig. 4, and obtain the masked
image-level feature H;?[ by multiplication and addition operations.
The generation process of H}?t is as follows:

— Query F,
/DXI -a o

ﬁr’ 1 Similari
Dx1 imilarity '
GAP Rx1 GAP
)
».d »
L L
£

Img feat map F
TxH*xWxD TxH*xWxD

W<

Fig. 5. The architecture of the CMIL module. The “Vid feat map” and “Img feat map”
are the frame-level output of Non-local ResNet-50 in video embedding stream and
the output of ResNet-50 in image embedding stream, respectively. They are aver-
aged and added to construct a query vector, and the “Vid feat map” is reshaped as

pr v
[P . eg< AN 5 a memory matrix. By calculating the similarity between query and memory, a mask
[ jt .yl = 3 PEPL @)/ (5) can be obtained. Finally a balanced feature is obtained by introducing a residual
z€l learning scheme, and pooling by a GAP layer.
Hj; = Py + Py @[Py (. y)]. (6)

where, Z = (x,y)|x=1,...,25;y = 1, ..., 12s, g(-) represents a convo-
lution operation of 1 x 1 kernel size, and ¥ = ||P]V[|| is the L2 norm
of Pj”t The symbol  represents the channel-wise Hadamard matrix
product operation. The masked image-level features can weaken
the influence of negligible body parts and backgrounds. Finally, H}?t
is utilized to generate aggregated 3D local appearance semantic
image A;.'t by CB 3 and a global max pooling (GMP) layer. The rea-
son why we adopt GMP layer rather than global average pooling
(GAP) layer here is that the GMP layer is more helpful to only pre-
serve the largest response values for a local view [42].

After the semantic alignment, both 137[ and A'J?[ will be fed into

the weights-irrelevant ResNet-50 model to extract features as fI"j

and fzj. The proposed MBAN and ResNet-50 in appearance embed-
ding stream are jointly trained in an end-to-end manner, which
can reduce the information loss of MBAN while the identity fea-
tures are learned. To further guide the learning of f/, we fuse f”

and f/'\” by:
f?lfsed = In] + f/ir\'] (7)

The fusion between f,”j and f/’:j as an additional branch is help-
ful to make global color images and local appearance images com-
pensate each other.

3.3. Cross-modal interactive learning

To solve the problem of modality misalignment, this work pro-
poses a CMIL module as shown in Fig. 5. An interactive similarity
comparison mechanism in the CMIL module is adopted to build
the relation between images and videos by calculating the similar-
ity of features. Compared with the image features, the video fea-
tures contain the abundant temporal information. To enhance the
representation ability of video features, the video features are se-
lected along the spatial and temporal domain by multiplying the
similarity. The enhanced video features are integrated into one-
dimensional features with the length of channel number, and fused
with image features as the balanced identity features. By jointly
training the balanced identity features, image features and video
features, the gap between two modalities are further minimized.

Specifically, after passing the Non-local ResNet-50 in video em-
bedding stream and ResNet-50 in image embedding stream, we
can obtain frame-level feature maps F, € RTx"wxD of videos, and
image feature maps F € RT*"w=D | respectively. The items h and w
are the height and width of feature maps. For each image in {I}qt},

its feature map is squeezed to an image feature vector I-j‘ by a GAP
layer. The mean vector F, of F, is calculated by a mean operation
in temporal domain and a GAP layer in spatial domain. To enhance
the relations between image and video modalities, we construct a
query vector Fé by the weighted sum operation. The features F,
and F are indeed extracted from the same video clip. By fusing
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F, and F as the query, the more robust spatial appearance infor-
mation and temporal motion information are integrated into the
query vector for the subsequent effective similarity modeling be-
tween two modalities. The query vector Fé is defined as:

Fy=af +(1-a)F, (8)

where o € [0, 1] is used to balance the importance of two modali-
ties for constructing query Fé. Moreover, F; is reshaped to RR*D as

a memory matrix Fy, and R =T x h x w. The construction of query
vector and memory matrix is convenient for calculating the simi-
larity between frames in video clips and training images. Based on
the F, and F{, a similarity map I is calculated by:

e

T(RLFY) = 9)

> jel1 ] efvft
where F(F",Fé) is the ith item in the similarity map. All feature
maps in F will be repeated by the operations in Formula (8) and
Formula (9). Utilizing the learned similarity map I" and raw image
feature map F, we can obtain an interactive feature map Fg with a
residual learning scheme.

Fy=F/T +H, (10)

where the term 13‘,T I' is repeated as a tensor with the size of
H xW x D along the spatial domain. The feature map F; can be
further integrated to compact balanced identity feature f,’s” by a
GAP layer. The balanced identity feature f,’g” contains the knowl-
edge in both image and video modalities by interactive learning.
Then, the feature f3’ is in conjunction with f;,’ and f;" to train the
12V ReID model. The reason why we use F, as the memory rather
than image features is that the video modality contains abundant
temporal information.

3.4. joint training

In this paper, the work [19] is utilized as the baseline with
the guidance of identification loss Ly, triplet loss L,; and temporal
knowledge propagation (TKP) loss Lykp [19]. The features fV, and

fl are supervised by:

el

Lig = —~log(———). (11)
> ke[1N] ePi
Lyi = [m+?1€as>§d(fa,fp)f;ngsxd(fa,fng)h, (12)

where pf e(w] f/. w} f’}, and {w;,wy} represents the clas-
sifiers in image and video embedding streams. The term
py, denotes the classification score of classifying correspond-
ing features into the nth class with the classifier. In For-
mula (12), the features (fq, fp, fng) of identity triplets belong to
(o fi f). (B fos Bo)s A fos fods (v, fio f} mis a pre-defined
margin, and d(-) denotes the Euclidean distance. The feature f; is
an anchor in training batch, S is positive set with the same iden-
tity of fy, and S; is negative set with the different identity of fj.
In other words, fp €S/ and fane € S; denote the features of pos-
itive and negative samples of f;, respectively. The features f; and
fy are shorthand for image-level features learned by image embed-
ding stream and video-level features learned by video embedding
stream, respectively.

The essence of TKP loss is to minimize the Mean Square Error
(MSE) [43] between f and f;’. which is formulated as:

N’T . o
Lrkp = % > ||f,njt—f}”t” + 1D = Dv ||, (13)
1

nt=1,
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where ||-|| denotes the square of the L2 norm, and ||-|| denotes the
square of Frobenius norm. The terms D;, Dy € RNTXNT represent the
Euclidean distance matrices cross different samples in image and
video embedding streams.

For f};j and f"jsed, the

Pl lwy £y, w}usedf}'}jsed} is also utilized to learn identity-sensitive
features, and wy and w4 are corresponding classifiers. To model
the relations between appearance and video embedding streams, a
triplet-based loss L,y is introduced, which is implemented by For-
mula (12) with (fa, fy, fv). The symbol f, is short for appearance
features learned by appearance embedding stream. Moreover, the
balanced identity feature f3’ is supervised by Ly g and Ly g

Formula (11)  with

The loss Lig o is implemented by Ly with pf, =wj fz’, and wg
is the corresponding classifier. The loss Ly 4 is implemented by
Ly with (fp, fp. fg), while fp is shorthand for balanced features
learned by CMIL module. The final loss function is formulated as:

L = Lig+Lig_are +Lrkp + A (Leri+Leri_aee +Laov ). (14)

where A is set to 1.5 following [19]. The larger A is set for triplet
loss than identification loss, since the 12V RelD indeed belongs to
verification-based task.

4. Experiments and discussions
4.1. Datasets and settings

MARS Dataset: This dataset [15] contains 1,261 identities and
20,478 tracklets captured by 6 cameras. We follow the baseline
[19] to split the dataset into the training and test splits. The train-
ing split contains 625 identities and 8,298 tracklets, while the test
split contains 635 identities and 11,310 tracklets.

DukeMTMC-VideoReID Dataset: This dataset [10] contains
1,404 identities and 5,534 tracklets captured by 8 cameras in to-
tal. We follow the baseline [19] to split the dataset into two splits
for training and testing. The training split contains 702 identities
and 2,196 tracklets, while the test split contains 702 identities for
testing, 408 distractors and 2,636 tracklets.

iLIDS-VID Dataset: This dataset [44] contains 300 identities and
600 tracklets captured by 2 cameras. We follow the baseline [19] to
split the dataset into two splits for training and testing. The train-
ing split contains 150 identities and 300 tracklets, while the test
split contains 150 identities and 300 tracklets.

Implementing Details: In the training phase, we randomly
sample 4 frames with a stride of 8 frames from the raw full-length
video to form a training video clip. If the length of the raw video
is less than 32, we duplicate it to meet the required length. The
ResNet-50 and Non-Local ResNet-50 in three different streams are
initialized by the ImageNet pre-trained weights and initialization
method in [38]. The input video frames are resized to 256x128,
and the training batch size is set to 14, which depends on the
computation ability of the GPU used in our work. The horizontal
flip is used for data augmentation. The parameters s =32, a = 0.5
in Formula (8), and m = 0.3 in Formula (12) are set in our work.
The dimension D of features is set to 2048. In the backpropaga-
tion process, the proposed pipeline is trained with Adam optimizer
[45] with weight decay 0.0005, and the initial learning rate is set
to 0.0003. In the test phase, we only utilize the raw video and im-
age embedding streams, and the appearance embedding stream is
discarded in order not to add extra computation cost and keep the
fairness of the evaluation. The setting adopted in the test phase is
same as the work [19]. This work is implemented by PyTorch with
one NVIDIA GeForce RTX 2080 Ti GPU.

Evaluation Metrics: The task setting [16] is adopted in this
work. The Cumulative Matching Characteristics (CMC) [46] and
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Table 1

Evaluation of proposed methods with the settings of 12V, 12I and V2V RelD on the
MARS dataset. The 121 ReID denotes the image-based person RelD, which is imple-
mented by only using the first frames of query and gallery samples. The V2V RelD
denotes the video-based person RelD, which is implemented by using full-length
query and gallery videos.

MARS
Method

12V RelD 121 RelD V2V RelD

top-1 mAP  top-1 mAP  top-1 mAP
TKP (Baseline) [19] 756 651 710 550 840 733
TKP (ReRun) 754 64.1 71.1 54.6 82.4 72.2
TKP+3D-SAA 78.5 67.1 72.2 57.0 85.6 75.1
TKP+CMIL 77.3 67.2 71.4 56.1 85.0 75.6

TKP+3D-SAA+CMIL (Ours)  79.1 69.0 726 58.1 86.1 76.9

Table 2
Evaluation of proposed methods with the settings of 12V, 121 and V2V RelD on the
DukeMTMC-VideoRelD dataset.

DukeMTMC-VideoReID

Method
12V RelD 121 RelD V2V RelD
top-1 mAP top-1 mAP top-1 mAP
TKP (Baseline) [19] 77.9 75.9 63.4 54.8 94.0 91.7
TKP (ReRun) 76.2 74.2 63.5 54.5 94.0 91.8
TKP+3D-SAA 79.3 77.2 65.5 57.8 93.9 92.2
TKP-+CMIL 77.2 76.1 66.7 57.8 94.0 92.7

TKP+3D-SAA+CMIL (Ours)  81.2 79.1 68.4 60.0 949 92.6

mean Average Precision (mAP) [47] are used to evaluate the per-
formance of proposed methods. These two metrics can well reflect
the precision and recall of proposed methods over whole datasets,
which has been widely used for many RelD tasks [5,9,48].

4.2. Effectiveness of proposed methods

Settings: The performances of our proposed methods on MARS
dataset and DukeMTMC-VideoRelD dataset are depicted in Table 1
and Table 2. In our experiments, the work TKP [19] is utilized as
our baseline, and all improvements are built on this baseline. Due
to the limitation of the computation source, we cannot meet the
requirements of training batch size equal to 16 in [19]. The training
batch size is set to 14 up to the maximum of the video memory. As
shown in Tables 1 and 2, the TKP method is rerun with the batch
size of 14, and the results slightly drop compared with the results
of “TKP (Baseline)”. The “TKP + 3D-SAA”, “TKP + CMIL” and “TKP
+ 3D-SAA + CMIL” denote the baseline with only proposed 3D-SAA
module, only proposed CMIL module, and both 3D-SAA and CMIL
modules, respectively.

Results of Proposed Methods on 12V RelD: From comparisons
between “TKP + 3D-SAA” and baseline under the setting for 12V
RelD, it can be seen that the 3D-SAA module has 2.9% top-1 and
2.0% mAP improvements on MARS dataset, and 1.4% top-1 and 1.3%
mAP improvements on DukeMTMC-VideoRelD dataset. These sta-
ble improvements are attributed to the more fine-grained align-
ment from the 3D-SAA module. From comparisons between “TKP
+ CMIL” and baseline under the I2V RelD setting, it can be seen
that the CMIL module has 1.7% top-1 and 2.1% mAP improvements
on MARS dataset. Though “TKP + CMIL” does not have obvious
improvements on DukeMTMC-VideoRelD dataset, it can work well
with the proposed 3D-SAA module. It can be seen that the CMIL
module can play an important role due to its interactive communi-
cation between two heterogeneous modalities. By comparing “TKP
+ 3D-SAA + CMIL” with baseline, it can be observed that the fusion
of two proposed modules can further improve the performance of
12V RelD on two datasets. These two modules are complementary
to each other by addressing two kinds of misalignment problems.
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Comparison among I2I, 12V and V2V RelD: Tables 1, 2 and
Fig. 6 show the results of proposed methods under different RelD
settings, including 121, 12V and V2V RelD settings. It can be seen
that both 3D-SAA and CMIL modules can improve performances
under different settings. For all methods, the performances for 121
RelD are worse than 12V RelD, and the performances for 12V RelD
are worse than V2V RelD. The reason is that V2V RelD adopts extra
temporal information than 12V RelD, and 12V RelD considers abun-
dant visual information than I2I RelD. It is important to address the
information loss caused by modality misalignment. As depicted in
Fig. 6, our proposed method performs better than baseline under
three different RelD settings, since the learned features are more
identity-sensitive.

It can be also seen that both 3D-SAA and CMIL modules have
certain performance improvements on both mAP and top-1 ac-
curacy. Compared with the method “TKP+3D-SAA”, the method
“TKP+3D-SAA+CMIL” increases the mAP accuracy by 1.9%, 1.1%, 1.8%
under the 12V, 12 and V2V RelD settings, respectively. However, the
CMIL module only increases the top-1 accuracy by 0.6%, 0.4%, 0.5%
under the 12V, 12 and V2V RelD settings, respectively. By contrast,
the CMIL module increases the top-1 accuracy by 0.9%, 2.9%, 1.9%
under the 12V, I2] and V2V RelD settings on DukeMTMC-VideoRelD
dataset, respectively. The differences on two datasets are mainly
caused by the dataset characteristics. In [19], the authors give the
dataset statistics of two datasets, and the average lengths of per-
son videos in MARS and DukeMTMC-VideoRelD datasets are 58 and
168, respectively. The longer person videos help to obtain more
robust identity features from person videos. Moreover, the higher
mAP performance gain than the top-1 means that the top-1 results
are not easily be found on the MARS dataset. Relatively speaking,
the shorter person videos in the MARS dataset has more noises
than the longer person videos. The proposed CMIL module aims to
propagate the temporal motion information from videos to images
in order to minimize the modality gap. The temporal motion in-
formation in shorter person videos is less than the longer person
videos.

4.3. Comparisons with state-of-the-arts

Settings: Tables 3 and 4 show the comparisons between
proposed method and state-of-the-art methods on MARS and
DukeMTMC-VideoReID datasets, respectively. Table 5 shows the
comparisons with other 12V RelD methods on the iLIDS-VID
dataset. The comparisons in Tables 3, 4 and 5 are based on the
same setting following [19], while the methods with different
dataset settings are not reported for fairness. The term “#avgID”
mentioned in [24] represents the mean number of identities used
in each training batch. As illustrated in [24], the term “#avgID” will
influence the performance of the proposed algorithm, so we report
the results which have the most similar settings to ours for fair-
ness. To evaluate the effectiveness of the proposed method, we re-
port the results which have the same “#avgID” as the baseline.

Analysis of Competitiveness: From the comparisons in
Tables 3 and 4, the proposed method outperforms “P2SNet [16]",
“ResNet-50 + XQDA [49]”, and “TKP [19]” methods in a large mar-
gin on two datasets. The improvements are attributed to the ap-
pearance and modality alignment addressed by our proposed 12V
RelD pipeline. Compared with the method “READ [24]”, our work
also performs better than its with the similar settings. The larger
“#avgID” is helpful to obtain better results, because more sam-
ples with more identities can be introduced to each training batch
[24]. However, the results of our proposed method are still com-
petitive with a smaller “#avgID”. Although both “TKP” and “READ”
contain a cross-modal learning module, they either only transfer
knowledge in one direction or integrate two modalities into one
intermediate modality. The CMIL module in our pipeline not only
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Fig. 6. Comparisons among three settings on MARS and DukeMTMC-VideoRelD datasets. The results of TKP baseline, our proposed method, and the improvements are shown.

Table 3

Comparisons between our proposed method and the state-of-arts on MARS dataset.
Method Source #avgID  top-1  top-5 top-10 mAP
P2SNet [16] TCSVT 2017 - 55.3 72.9 78.7 -
ResNet-50 + XQDA [49] - - 67.2 81.9 86.1 54.9
TKP (Baseline) [19] ICCV 2019 4 75.6 87.6 90.9 65.1
TKP (ReRun) [19] ICCV 2019 4 75.4 87.4 90.7 64.1
DSA [29] - 4 78.3 88.9 91.4 68.7
STE-NVAN [50] BMVC 2019 - 80.3 - - 68.8
NVAN [50] BMVC 2019 - 80.1 - - 70.2
MGAT [51] CVPRW 2019 - 81.1 92.2 - 71.8
READ [24] ECCV 2020 32 81.5 91.2 93.3 69.9
ResNet-50x [27] ECCV 2020 8 82.2 - - 734
ResVKD-50 [27] ECCV 2020 8 83.9 93.2 - 77.3
Ours - 4 79.1 89.4 91.9 69.0
Ours - 8 80.2 90.7 92.7 70.8
Ours - 32 81.3 91.7 93.8 72.6
Table 4

Comparisons

between our proposed method and state-of-the-art method on

DukeMTMC-VideoRelD dataset with the same dataset setting following [19].

Method Source #avglD  top-1 top-5 top-10 mAP
TKP (Baseline) [19]  ICCV 2019 4 77.9 - - 75.9
TKP (ReRun) [19] ICCV 2019 4 76.2 88.6 91.6 74.2
NVAN [50] BMVC 2019 - 78.4 - - 76.7
ResNet-50x [27] ECCV 2020 8 823 - - 80.2
ResVKD-50 [27] ECCV 2020 8 85.6 93.9 - 83.8
Ours - 4 81.2 91.3 93.9 79.1
Ours - 8 80.9 91.9 93.9 79.4
Ours - 32 82.8 92.0 94.7 81.0

Table 5

Comparisons with other 12V RelD methods on the iLIDS-VID dataset.
Method Source top-1 top-5 top-10  top-20
MPHDL [25] TIFS 2017 32.6 55.8 69.3 83.2
TMSL [17] TCSVT 2017  39.5 66.9 79.6 86.6
P2SNet [16] TCSVT 2017  40.0 68.5 78.1 90.0
Xie et al. [23] PRL 2020 40.1 67.2 79.7 86.7
TKP (Baseline) [19]  ECCV 2020 54.6 794 86.9 93.5
Ours - 54.7 78.0 87.3 92.7

can interactively transfer knowledge between two modalities but
also can preserve its own domain knowledge in each modality.
Here, we also show the results of state-of-the-art methods, “STE-
NVAN” [50], “NVAN” [50], and “MGAT” [51], which validates the
effectiveness of the proposed method. The work [27] proposed a
self-distillation based method, which is totally different from the
motivation of our work. From Tables 3 and 4, it can be seen that
the commonly used ResNet-50 model can achieve state-of-the-art
performances with the help of [27]. The ResNet-50 model used
for teacher model in [27] is called “ResNet-50«", while the stu-
dent model with the view knowledge distillation in [27] is called

“ResVKD-50". Although the self-distillation learning manner is not
used in our work, the proposed method can still achieve the com-
petitive results compared with [27]. The main contributions in this
work are dedicated to provide a solution to learn the identity-
sensitive features and address two misalignment problems, rather
than strive for achieving the highest mAP and top-K accuracy. The
DSA method [29] also introduces the 3D human surface model to
the RelD task, however, the motivation and implementation are
not the same as our 3D-SAA module. Table 3 shows the results
of “DSA” on the MARS dataset by replacing the 3D-SAA module in
the proposed pipeline. The improvements verify the effectiveness
of the proposed 3D-SAA module.

Compared with MARS and DukeMTMC-VideoRelD datasets, the
iLIDS-VID dataset has fewer identities and tracklets. The results of
the TKP method reported in Table 5 are first pre-trained on the
large-scale MARS dataset following [19]. From Table 5, it can be
seen that the proposed method can overhead many 12V RelD meth-
ods, like MPHDL [25], TMSL [17], P2SNet [16] and Xie et al. [23].
From the comparisons between the baseline and our method, it
can be observed that though our method does not achieve the
large performance gain, the results are still competitive. The re-
sults are caused by the limited training data, while the proposed
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Table 6

Analysis of key components in MBAN on MARS dataset.
Method top-1 top-5 top-10 mAP
TKP (Baseline) [19] 75.6 87.6 90.9 65.1
TKP + 3D-SAA w/o MBAN 76.0 88.4 91.1 65.7
TKP + 3D-SAA w/o Body prior  76.9 89.1 92.1 66.7
TKP + 3D-SAA w/o Mask 77.0 88.4 91.2 66.7
TKP + 3D-SAA 78.5 89.2 92.0 67.1
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Fig. 7. Some toy examples of raw images, 24-parts appearance images, and masks
learned by MBAN. The samples in Row 1 and Row 2 are captured from MARS
dataset, while the sample in Row 3 is captured from DukeMTMC-VideoRelD dataset.

method has more parameters needing to be trained than the base-
line.

4.4. Ablation study

Analysis of MBAN Part: The analysis of key components in
MBAN on MARS dataset is depicted in Table 6. From Table 6, it
can be seen that the 3D-SAA module improves the mAP and top-1
accuracy by 2.0% and 2.9% in total. If the MBAN is removed, the
mAP and top-1 accuracy can only be improved by 0.6% and 0.4%. If
the body prior reshape part is removed, the mAP and top-1 accu-
racy can be improved by 1.6% and 1.3%. The local appearance im-
ages with body prior can minimize the gap between appearance
branch and image branch with the help of the geometric informa-
tion of human body structure. Moreover, from the results of “TKP +
3D-SAA w/o Mask”, it can be observed that the mAP and top-1 ac-
curacy can only be improved by 1.6% and 1.4%. Fig. 7 shows some
examples of learned masks by MBAN. The more dark the color of
the mask figure is, the larger the value of the mask is. It can be
seen that the learned masks can further decrease the influence of
the negligible body parts and backgrounds. By observing the esti-
mated appearance images in Fig. 7, we can also see that the body
parts can reflect more detailed appearance information than 2D
key joints of the human body. Compared with the improvements
obtained from Alp Giiler et al. [22], the proposed MBAN and key
components in MBAN are more crucial for the performance im-
provements of 3D-SAA module.

Evaluation of Loss Functions in 3D-SAA Module: The 3D-SAA
module is trained with multiple loss functions. Table 7 depicts the
influence of different loss functions used for training 3D-SAA mod-
ule on MARS dataset. The items Lig(fa) and Lig(fyseq) denote the

identification loss for features f/’:j and f%se > respectively. The item
Lapv_mse means that the loss L,y is replaced by MSE loss. From

Table 7, it can be seen that the fusion of fl"j and f:j results in a
performance degradation if the Lyyy, is not utilized. It implies that
the loss Lapy can further guide the fused features to learn more
semantic features. If Ly, is replaced by MSE loss, the performance
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Table 7
Evaluation of loss functions for 3D-SAA module on
MARS dataset.

Loss Combinations

Lig(fa) v v v v v
Lig(frused) v v v
Laav_mse v

Laov v v
top-1 76.0 75.2 75.9 75.0 78.5
mAP 65.3 64.1 66.0 64.5 67.1

Fig. 8. The visualization of feature maps learned by ResNet-50 in image embedding
stream with different communication methods of CMIL module on MARS dataset.
The “x_F” represents the mapping between raw images and heatmaps for the corre-
sponding method “x”. The “READ”, “CMIL_V” and “Ours” denote the methods “Ours
with READ”, “Ours with CMIL_V” and “Ours” in Table 8, respectively. (Best viewed
in color)

Table 8
Evaluation of different communication ways of CMIL module
on MARS dataset.

Method top-1 top-5 top-10 mAP

Ours with READ 72.9 85.6 89.6 60.5
Ours with CMIL.LV ~ 77.0 88.7 91.6 66.7
Ours 79.1 89.4 91.9 69.0

with MSE loss cannot achieve the performance of Ly, since Lyoy
belongs to a triplet loss which can better constrain distances be-
tween videos and appearance images.

Different Communication Ways in CMIL Module: To evalu-
ate the effectiveness of the CMIL module, different communica-
tion ways are compared in Table 8. Compared with the method
[24], our proposed method interactively communicates between
image modality and video modality. However, compared with im-
age modality, the video modality has more abundant temporal in-
formation. To this end, an extra branch is added by propagating
the learned mutual information to image modality. In Table 8, the
method “Ours with READ” means that the CMIL module in our
12V RelD pipeline is replaced with Reciprocal Attention Discrimi-
nator (READ) in [24]. We implement this by replacing the fully-
connected layer of READ with the GAP layer and adopting the
same training batch size as ours, due to the limited computational
ability. It can be seen that the READ cannot perform well in our
pipeline, when we do not utilize plenties of training identities in
each batch, the specially designed sampling strategy, and the recip-
rocal attention based loss in [24]. The method “Ours with CMIL_V”
means the inverse way that it adopts an extra branch by propagat-
ing the learned mutual information to video modality. It can be
seen that the results of our method are better than “Ours with
CMIL_V”, since the mutual information can compensate for more
information loss of image modality.

Fig. 8 depicts the visualization results of feature maps learned
by ResNet-50 in image embedding stream with different commu-
nication methods in the CMIL module. It can be observed that the
features learned by “Ours with READ” are not centralized enough,
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Fig. 9. Performances on variable clip size T conducted with MARS dataset.

while our method can focus more on the crucial body regions, like
the lower torso in Row 1 and upper torso in Row 2. These regions
are not easily affected by external interferences, such as clothes
changes and occlusion. Compared “Ours with CMIL_V” with ours, it
can be seen that the learned features are more fine-grained, since
the video clips have more temporal information than images.

Influence by Different Clip Size: Fig. 9 shows the performances
on different clip size T conducted with MARS dataset. We evaluate
five variants of T from 2 to 6, and the best results are achieved
when T is 4. The performance of T = 6 drops obviously, since the
computation ability of hardware limits the training batch size. The
training batch size can only be set to 8 when T is 6, which seri-
ously influences the diversity of training identities in each batch.

Evaluation of the parameter «: The evaluation of the param-
eter o in Formula (8) is shown in Fig. 10. It can be seen that
the top-1 accuracy achieves the best when o = 0.5, and the mAP
accuracy achieves the best when « = 0.6. The results reflect the
integration of both image and frame features in videos is more
helpful to construct the relation between two modalities. If only
image features or frame features are treated as the query in the
CMIL module when o = 0 or @ = 1, the query simply preserves the
knowledge of one modality, which is not optimal. In this paper, the
parameter « is set to 0.5 if not specified.

Img

TKP_H TKP_F SAAH SAAF CMILH CMIL_F Ours_H Ours_F

Pattern Recognition 122 (2022) 108314

84 - —=— topl
0 4 —o— mAP
80 79.1 78.7
78 _/.\./'\.\.__‘
< 76 1
.2
=
5 74 -
p=
72
70 - 69.0 69.3
o] /.\‘/0/—"\‘\‘
66
T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
o

Fig. 10. Evaluation of the parameter & on MARS dataset.

4.5. Visualization

To further analyze the effectiveness of proposed methods, we
also give the visualization results of feature maps learned by
ResNet-50 in image embedding stream with different proposed
methods, as shown in Fig. 11. Overall, it can be seen that our
method focuses on the more robust body-shoulder region of per-
sons. The body-shoulder region is currently considered to be a
key cue for representing identity information [52]. By contrast, al-
though the TKP method can learn representative features, the fea-
tures are still not centralized enough. The 3D-SAA module can fo-
cus more on the crucial appearances of persons due to its fine-
grained semantic alignment property. The CMIL module is impor-
tant to find temporal domain invariant information. It can be seen
that the features learned by our method are more fine-grained and
temporal domain invariant.

In Row 2 and Column 2 in Fig. 11, the person is occluded which
results in the appearance misalignment. It can be observed that
both the TKP method and our 3D-SAA module focus on the bags of
the target-unrelated pedestrian. However, the 3D-SAA module pays
more attention on the more robust head-shoulder region. Our CMIL
module can ignore the influence of cluttered backgrounds by tem-
poral compensation. From the examples in Row 3, it can also be
seen that our proposed method is less susceptible to the changes
in the camera view and other appearance information.

Img  TKP_H TKP_F SAAH SAAF CMIL H CMIL_F Ours_H Ours_F

HEEEBREE

Y

AEEREEER
slalalslajelelals

ale 9 9
] 2] 2 k)
NHHBEBERRE
L, 51910 I B
*EEEECERE

Fig. 11. The visualization of feature maps learned by ResNet-50 in image embedding stream with different proposed methods. The “x_H" represents the learned heatmap
by the corresponding method “x”, while “x_F” represents the mapping between raw images and heatmaps for the corresponding method “x”. The “TKP”, “SAA”, “CMIL” and
“Ours” denote the baseline TKP method [19], proposed 3D-SAA module, proposed CMIL module, and Our proposed 12V RelD pipeline with both 3D-SAA and CMIL. (Best

viewed in color)
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5. Conclusion

This paper presents a deep 12V RelD pipeline based on proposed
3D-SAA and CMIL modules to address appearance and modal-
ity misalignment problems. The 3D-SAA module can semantically
align local body parts of persons and weaken the influence of the
negligible body parts and cluttered backgrounds. The CMIL mod-
ule can interactively propagate the modality knowledge of each
modality to each other, which can minimize the gap between two
modalities. Two complementary modules can guide the deep 12V
RelD pipeline to learn more fine-grained and temporal domain in-
variant feature embedding. This property indicates the generaliza-
tion ability of our method against misdetections, pose, and camera
view variations, for the 12V RelD task. Extensive quantitative and
qualitative experiments validate the effectiveness of the proposed
method. Although this paper can weaken the influence of the ap-
pearance misalignment problem, the proposed 12V RelD pipeline
is still affected by the 3D human surface estimation results. The
light-weight 3D human surface model, and joint learning of both
3D human surface estimation and 12V RelD can be investigated in
the future.
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