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a b s t r a c t 

The surface defect detection is an important process in the production of mobile phones. To detect var- 

ious mobile phone surface defects and acquire detailed features of tiny defects, this paper proposes a 

Hierarchical Multi-Frequency based Channel Attention Net (HMFCA-Net). In particular, an attention mech- 

anism that uses multi-frequency information and local cross-channel interaction is proposed to represent 

the weighted defect features. A deformable convolution based ResNeSt network is introduced to handle 

various defect shapes. Besides, to overcome the extreme aspect ratio problem caused by the tiny phone 

surface defects, a RoI Align is introduced to decrease localization error. Experiments on the public DAGM 

dataset and a self-collected dataset named MPSSD shows that the proposed method achieves promising 

performance on defect detection task. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In the actual production process, the defect detection takes high 

abor costs in most mobile phone foundries since the existing man- 

al or online sampling defect methods require a lot of labor. In 

ddition, the subjective differences of individuals make it easy to 

ause false detections and missed detections. As a result, seeking 

n efficient, reliable, and accurate intelligent detection system to 

eplace manual detection is of great significance for the quality 

ontrol of products. 

Due to the excellent robustness and high accuracy of deep neu- 

al networks, deep learning-based object detection techniques have 

een widely used in pedestrian detection [16] , text detection [11] , 

ideo surveillance [14,22] , autonomous driving [4,5] , defect detec- 

ion [10,25,31] , etc. In literature, there are some works that use 

eep learning-based methods to perform the surface defect detec- 

ion of mobile phones [13,15,19] . Although significant progress has 

een achieved, most of the current methods directly apply deep 

earning-based object detection technologies to the defect detec- 

ion domain, while they ignore that defect detection is somewhat 

ifferent from object detection as the size of defects is usually ex- 

remely small compared to the whole image (i.e., the extreme as- 

ect ratio problem) and the defect detection is easily affected by 
� Editor: Emmanouil Benetos 
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ow contrast, background, etc. The first row of Fig. 1 shows some 

obile phone surface defect examples, in which the defect areas 

re indicated by thick outlines. The defects are usually small com- 

ared to the whole image. (j)–(l) shows the extreme aspect ratio 

roblem of mobile phone scratches. The aspect ratio between the 

idth and height of scratches is extremely small, which is easy 

o cause localization error during regression process. Most of the 

xisting methods extract the features on the whole image, which 

ay contain redundant background information while contains lit- 

le information about defects. To solve the problem, this paper pays 

ore attention on the defect-related regions. In specific, a channel 

ttention mechanism that uses multi-frequency information and 

ocal cross-channel interaction is firstly introduced to get detailed 

eatures of tiny defects. It’s significant to accurately extract features 

elated to defects in an image. This paper focuses on two concerns: 

1) How to get more targeted defect features? Most of the 

current deep learning-based methods extract features on the 

whole image. As Fig. 1 shows, (d) is the input image with a 

tiny defect, (e) shows the feature extracted by Faster R-CNN, 

which ignores the defect information and involves redundant 

background information. While (f) successfully extracts the de- 

fect region features, showing the priority of attention mecha- 

nism in extracting task-specific features. Attention needs to be 

paid to defects-related regions in mobile phone surface defect 

detection. 

2) How to tackle the extreme aspect ratio problem and detect 

defects of different shapes? As Fig. 1 shows, defects in the 

https://doi.org/10.1016/j.patrec.2021.11.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.11.029&domain=pdf
mailto:dingrunwei@pku.edu.cn
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Fig. 1. The first row shows the mobile phone screen scratch defects and cover 

scratch defects. The second row illustrates the necessity of attention mechanism. 

(d) is the input image with a tiny defect, (e) shows the feature on the whole image 

extracted by Faster R-CNN, which ignores the tiny defect information. (f) shows the 

feature extracted by the proposed HMFCA-Net, which successfully acquires the de- 

fect feature. (g)–(i) are various defect shapes. (j)–(l) show the extreme aspect ratio 

problem of mobile phone scratches. 
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production line usually have various shapes and some of them 

even have extreme aspect ratio, which causes the defect local- 

ization error. It’s urgent to find a solution to detect defects of 

different shapes and different aspect ratios. 

Considering the foregoing concerns, this paper adopts attention 

echanism and proposes a HMFCA-Net to extract and represent 

he defect features. The overview of the proposed framework is 

hown in Fig. 2 . The deformable convolution-based network ex- 

racts feature of the input image, and features from Res2 to Res5 

ayer are further processed by HMFCA-Net. Then the HMFCA-Net 

nhances the defect feature representation of input features. It per- 

orms Discrete Cosine Transformation (DCT) on different frequency 

omponents and uses a local cross-channel interaction to keep the 

traight correspondence between channels and their weights. The 

PN module performs down-sampling operation to combine the 

utputs of HMFCA-Net. Following the FPN module, the RoI Align 

odule pools the combined feature into a fixed size for further 

lassification and regression. The proposed network outputs the 

efect type and location at last. 

The main contributions of this paper can be summarized as fol- 

ows: 

1) This paper proposes a hierarchical multi-frequency based chan- 

nel attention network (HMFCA-Net), which pays more attention 

on features related to defects through multi-frequency informa- 

tion and local cross channel interaction. 

2) This paper proposes an improved two-stage detector for mo- 

bile phone surface defect detection, where a deformable 

convolution-based ResNeSt network is proposed to detect de- 

fects with various shapes, and a RoI Align module is introduced 

to tackle the extreme aspect ratio problem. 

3) A self-collected MPSSD dataset containing 2644 images with 

two different scratches is produced and will be publicly avail- 

able. Extensive experiments carried out on MPSSD and the pub- 
119 
lic DAGM [27] dataset demonstrate the effectiveness of our 

method. 

. Related work 

.1. Surface defect detection methods 

In addition to traditional manual detection methods, the surface 

efect detection of mobile phones can be divided into methods 

ased on traditional machine vision and deep learning. For tradi- 

ional machine vision learning-based methods, Jian et al. [12] used 

 vision-based defect detection system to automatically detect de- 

ects of mobile phone screens, in which a contour-based image 

egistration algorithm was proposed to solve the misalignments in 

mages caused by rotation and displacement. Weimer et al. pre- 

ented a machine vision system using basic patch statistics com- 

ined with a two layer neural network to detect surface defects 

n arbitary textured and weakly labeled images [26] . The tradi- 

ional machine vision-based methods usually rely on hand-craft 

eatures, which can be extracted by the statistical rules, mathemat- 

cal principles, or user preferences. Although the hand-craft fea- 

ures are intuitive, they are still sensitive to image noise and ap- 

lication scenarios to some extent. Since the update cycle of mo- 

ile phones is very short, such as quarterly or half a year, tradi- 

ional methods cannot adapt to the rapid adjustment of mobile 

hone production. To solve this problem, many researchers try to 

ntroduce deep learning methods into defect detection. For exam- 

le, Lu et al. [19] proposed a generating sample method based on 

eep convolution generation antagonism network (DCGAN) for de- 

ecting the defects on mobile phone protection screen. Jie et al. 

15] proposed an end-to-end screen defect detection network for 

obile screen defect detection, in which the merging and splitting 

trategies were used to cope with multiple size and shape varia- 

ions of defects. For detecting the defects on the back glass of mo- 

ile phones, a symmetric convolutional neural network composing 

f encoder and decoder structures was introduced by Jiang et al. 

13] . For detecting the defects on the cover glass of mobile phones, 

uan et al. [30] proposed a modified segmentation method, where 

 data generation algorithm that combined with an augmentation 

rocess was presented to avoid the huge labelled data require- 

ent. Different from the aforementioned methods, this paper fo- 

uses on getting more targeted defect features. HMFCA-Net is pro- 

osed to assign different weights to feature channels adaptively 

o that the channels relevant to defects are enhanced and redun- 

ant background information is weakened. Besides, a deformable 

onvolution-based ResNeSt network and a RoI Align module are in- 

roduced to detect defects with various shapes and deal with ex- 

reme aspect ratio problem. 

.2. Attention mechanisms in CNN 

Recently, there are several attempts to improve the performance 

f neural networks for vision-related tasks. Attention mechanism 

as been proven helpful for enhancing deep CNNs. Channel atten- 

ion and spatial attention are two mainstream attention mecha- 

isms. Channel attention pays different attention to different fea- 

ure channels, while spatial attention pays different attention to 

ifferent positions on the feature map. Channel attention was the 

ore idea proposed by SE-Net [9] . Models can acquire features 

f different channels with different weights. The more important 

he channel is for the tasks, the bigger the relevant weight is. 

oo et al. [28] proposed a convolutional block attention module 

CBAM) to infer feature maps along channel and spatial dimen- 

ions, and the attention map was multiplied by the original input 

or feature refinement. In CBAM, global average pooling and max 

ooling were both used to get better information of inputs. Many 
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Fig. 2. Overview of our proposed method for mobile phone surface defect detection. The features from Res2 layer to Res5 layer of ResNeSt network are processed by HMFCA- 

Net. HMFCA-Net contains DCT transformation and local cross-channel interaction. FPN module combines the output features and the combined feature is used for further 

classification and regression. 
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mprovements were made based on channel and spatial attention 

echanisms [3,8] . ECA-Net [24] replaced the fully connected lay- 

rs in channel attention with one-dimensional convolution and 

ecreased model complexity. FcaNet [20] proposed a new pre- 

rocessing of channel attention to replace global average pooling. 

his work proved the insufficiency of global average pooling for 

ich feature representation. Fu et al. [6] proposed a dual attention 

etwork (DANet) which captured long-range contextual informa- 

ion in spatial and channel dimensions respectively and aggregated 

he outputs for pixel-level prediction. Zhang et al. [33] proposed 

eep residual channel attentions (RCAN) where residual channel 

ttention was used to rescale channel-wise features. 

In traditional channel attention mechanisms, global average 

ooling operation is generally used to get the input information 

n each channel, and two fully connected layers are used to get 

he weights of different channels. Despite the simplicity of global 

verage pooling, it is inadequate to get rich information of inputs 

ecause various inputs can have the same mean value. Two fully 

onnected layers reduce data dimensionality but destroy the di- 

ect correspondence between channels and their weights [24] . This 

aper takes advantage of FcaNet [20] and ECA-Net [24] and pro- 

oses a hierarchical multi-frequency based channel attention net- 

ork (HMFCA-Net). Multi-frequency information of features and 

ocal cross-channel interaction are used to get weighted defect fea- 

ures, where the features of defect regions are enhanced. The out- 

uts of HMFCA-Net are processed by feature pyramid networks to 

ombine features in deep and shallow layers for better defect de- 

ection. 

. Method 

Taking faster R-CNN [21] with FPN [17] as the baseline, 

his paper makes three improvements: HMFCA-Net, deformable 

onvolution-based ResNeSt network, and RoI Align. The structure 

f the proposed method is shown in Fig. 2 . This section will intro-

uce it in detail. 

.1. Hierarchical multi-frequency based channel attention network 

For simplicity, channel attention mechanism generally uses 

lobal average pooling to get initial weights of features for each 

hannel, which calculates the mean value of all pixel points for 

ach feature map. However, different features can share the same 

ean value after global average pooling operation, making them 

ndistinguishable. Hence, it’s unsuitable to apply global average 

ooling for tiny features in defect detection. Besides, it has been 
120 
roven in Qin et al. [20] that global average pooling can be re- 

arded as the lowest frequency component of two-dimension dis- 

rete cosine transform (2D DCT). It’s redundant to extract infor- 

ation from channels at the same frequency component. Moti- 

ated by the above, this paper proposes HMFCA-Net combined 

ith multi-frequency information and local cross-channel interac- 

ion to get weighted defect features, where features of defect re- 

ions are enhanced. 

The flowchart of HMFCA-Net is shown in Fig. 2 , in which the 

raditional global average pooling is taken place by the proposed 

ulti-frequency information module. Denoting the features of Res2 

o Res5 layers from ResNeSt network as χm 

, mε{ 1 , 2 , 3 , 4 } and 

he relevant output features of HMFCA-Net as o m 

. The goal of the 

etwork is to learn a non-linear mapping φ : χm 

→ o m 

. In multi- 

requency information module, the input feature information on K

requency components at channel dimension is extracted through 

wo-dimension discrete cosine transformation, which can be calcu- 

ated as follows: 

f (u, v ) = 

H ∑ 

i =0 

W ∑ 

j=0 

x i, j cos ( 
πu 

H 

( 
1 

2 

+ i )) cos ( 
πv 
W 

( 
1 

2 

+ j)) (1) 

s.t. uε{ 0 , 1 , . . . , H − 1 } , v ε{ 0 , 1 , . . . , W − 1 } , 
here f (u, v ) is the frequency component of 2D DCT frequency 

pectrum, H and W are height and width of the input. In the fol- 

owing, the DCT weight term is denoted as B 
i, j 
u, v for convenience: 

 

i, j 
u, v = cos ( 

πu 

H 

( 
1 

2 

+ i )) cos ( 
πv 
W 

( 
1 

2 

+ j)) . (2) 

In HMFCA-Net, the input feature is divided into K (K equals to 

6 in this work) parts along channel dimension. Denoting these 

arts as 
[
X 0 , X 1 , . . . , X K 

]
, each part is assigned by its correspond- 

ng 2D DCT frequency component. To get DCT weights of the in- 

ut χi , the features of Res2 to Res5 layers are resized into 56 × 56 ,

8 × 28 , 14 × 14 , 7 × 7 at first. Then the DCT weights are constants.

he output of 2D DCT is denoted as F (X ) and it is the concatena-

ion of F m 

(u, v ) , which can be calculated as follows: 

 

m 

(u, v ) = 

H ∑ 

i =0 

W ∑ 

j=0 

x m 

i, j B 

i, j 
u, v s.t. mε{ 0 , 1 , . . . , K − 1 } . (3) 

MFCA-Net applies F (X ) to replace global average pooling. After 

D DCT operation, local cross-channel interaction is considered to 

ubstitute traditional fully connected layers in channel attention. 

wo fully connected layers are used for dimension reduction in 

hannel attention mechanism, which destroys the straight corre- 

pondence between channels and their weights and decreases the 
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Fig. 3. The structure of deformable convolution based ResNeSt block. 

Fig. 4. The comparison between traditional convolution (left) and deformable con- 

volution(right). Compared to traditional convolution, it’s easier for deformable con- 

volution to extract the shape characteristic of defects. 
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erformance of channel attention. Hence, HMFCA-Net takes local 

ross-channel interaction instead, and the structure of local cross- 

hannel interaction is shown in Fig. 2 . Denoting the output vec- 

or of 2D DCT as yεR C and the channel number of inputs as C, the

quation of local cross-channel interaction can be computed as fol- 

ows: 

(y ) = W g y, (4) 

 g = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

w 

1 . . . w 

g 0 0 . . . . . . 0 

0 w 

1 . . . w 

g 0 0 . . . 0 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

0 . . . . . . 0 0 w 

1 . . . w 

g 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (5) 

here W g is the weight matrix of local cross-channel interac- 

ion. All channels share the same learning parameters, so the local 

ross-channel interaction only involves g parameters. In this work, 

e empirically set g = 3 . The output weight of each channel I i is

nly related to g adjacent channels, as follows: 

 

i = 

g ∑ 

j=0 

w 

j y j 
i 

s.t. iε{ 0 , 1 , . . . , C } , (6) 

here y 
j 
i 

indicates the jth adjacent channel of y i . The sigmoid 

unction is done after local cross-channel interaction. Hence, the 

hole process of HMFCA-Net can be calculated as follows: 

→ o : o m 

= χm 

� sigmoid ( I ( F ( χm 

) ) ) , mε{ 1 , 2 , 3 , 4 } . (7) 

In HMFCA-Net, multi-frequency information and local cross- 

hannel interaction are applied to get detailed features of tiny 

efects. Through training, more attention can be paid on defect- 

elated regions. 

.2. Deformable convolution-based ResNeSt network 

The proposed method takes ResNeSt network [32] as the fea- 

ure map extractor. Deformable convolution is used to detect de- 

ects with various shapes. In this paper, the 3 × 3 convolution op- 

rations in the last three stages of ResNeSt network are substituted 

y 3 × 3 deformable convolution. 

ResNeSt is a variant of ResNet and is a split attention network. 

ompared to ResNet, ResNeSt enables attention across feature-map 

roups, and the architecture requires for less computational cost 

nd is easier to be applied to other algorithms. The stacking of de- 

ormable convolution-based ResNeSt blocks constitutes deformable 

onvolution-based ResNeSt network. The structure of deformable 

onvolution-based ResNeSt block is shown in Fig. 3 . It shows that 

he input feature is divided into K groups for further operation, 

hich are called as cardinal groups. There are R splits in a cardi- 

al group, hence the total number of feature group is G = KR . Af-

er transformations { F 1 , F 2 , . . . , F G } , the int ermediat e representation 

f each feature group U i equals F i (x ) , iε{ 1 , 2 , . . . , G } . Then the k th

ardinal group 

ˆ U k is calculated as follows: 

ˆ 
 k = 

Rk ∑ 

j= R (k −1)+1 

U j , (8) 

here the size of ˆ U k equals H × W × C/K, with H , W , C respectively

enote the height, width, and channel of the block output. Through 

he split attention in each cardinal group, we can get a weighted 

usion of a cardinal group representation: 

 k = 

⎧ ⎨ 

⎩ 

∑ R 
i =1 

exp ( ϑ i ( s k ) ) ∑ R 
j=0 exp ( ϑ j ( s k ) ) 

U R (k −1)+ i , if R > 1 

∑ R 
i =1 

U R (k −1)+ i 
1+ exp ( −ϑ ( s ) ) 

, if R = 1 

(9) 
i k 

121 
here ϑ i determines the weight of each split based on the global 

ontext representation s k . s k is calculated as follows: 

 k = 

∑ H 
i =1 

∑ W 

j=1 
ˆ U k (i, j) 

H × W 

. (10) 

As for deformable convolution, the 3 × 3 convolution operations 

n the last three stages of ResNeSt network are substituted by 3 × 3 

eformable convolution. The comparison between traditional con- 

olution and deformable convolution is shown in Fig. 4 . The convo- 

ution position of deformable convolution is deformable according 

o offsets, while traditional convolution can only extract the fea- 

ures of the rectangular box. It is easier for deformable convolu- 

ion to extract features of defects with different shapes. In sum- 

ary, the proposed deformable convolution-based ResNeSt net- 

ork combines the advantages of ResNeSt and deformable convo- 

ution, which is suitable for small defect detection with different 

hapes. 

.3. RoI align 

For slender scratches with extreme aspect ratio in mobile 

hones, the localization error caused by the quantization process 

f RoI pooling must be eliminated. A tiny bias in quantization may 

ead to several pixels bias in the original image, which may make 
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Fig. 5. The process of RoI Align. The white region is the whole input feature map 

and the yellow region is the corresponding bounding box region. RoI Align aims to 

resize the bounding box region into a fixed size m × m . Divide the bounding box 

region into m × m parts at first. Then four fixed pixels (colored in cyan) are chosen 

to calculate values, and the value of each point is bilinear interpolated using the 

nearest four real pixels (colored in green). 

Table 1 

The distribution of defects in train, val, test 

sets. 

Train Val Test 

screen_scratch 852 235 116 

cover_scratch 998 293 150 

total 1850 528 266 
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Table 2 

Backbone comparisons. 

Backbone #P GFLOPS 

VGG16 138.4 M 15.5 

ResNet-50 25.6 M 4.12 

ResNet-101 44.5 M 7.84 

ResNeS-t50 27.6 M 5.36 

(
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he model detect a wrong position for slender defects with ex- 

reme aspect ratio. To avoid the quantization process and improve 

he localization accuracy, a RoI Align module is applied. 

Fig. 5 demonstrates the process of RoI Align. The white region 

s the whole feature map, and the yellow region is the correspond- 

ng bounding box region. The goal is to get an output of bounding 

ox region with m × m size. The first step is to divide the bound- 

ng box region into m × m parts. We call each part a bin. It’s likely

hat the vertices will not fall on the real pixels after being divided 

qually. Then four fixed pixels (colored in cyan) are chosen to cal- 

ulate values. The value of each point is bilinear interpolated using 

he values of the nearest four real pixels (colored in green). Taking 

he biggest value in each bin as the output value, the output size 

s m × m . m is set to 2 in this paper. 

RoI Align eliminates the two quantization process in RoI pooling 

nd can improve the localization performance for mobile phone 

urface scratches with extreme aspect ratio. 

. Experiments 

.1. Datasets 

MPSSD dataset There are few datasets for mobile phone sur- 

ace defect detection task. Thus we propose a mobile phone sur- 

ace scratch dataset, named MPSSD. It contains two kinds of de- 

ects: screen scratches and cover scratches. The length of scratches 

anges from 2 mm to 8.3 mm, and the width is much smaller than

 mm. Hence the extreme aspect ratio is a common problem for 

cratch defects and challenges the localization performance of de- 

ectors. In total, this dataset includes 2644 images. Some examples 

re shown in Fig. 1 (a)–(c). The average pixel size of each image is

round 40 0 0 × 30 0 0. To simulate a real product line, we don’t crop

mages into small sizes. The distribution of the dataset is shown in 

able 1 , where 1850 images are randomly selected to train object 

etection models, 528 images are selected to evaluate the models, 

nd 266 images are selected for testing. 
122 
DAGM dataset DAGM dataset is artificially generated by DAGM 

German Association for Pattern Recognition) and GNNS (German 

hapter of the European Neural Network Society). There are 10 

inds of defects and 2100 images. Among them, 1046 images are 

sed for training, and 1054 images are used for testing. The image 

ize of DAGM dataset is 512 × 512. 

.2. Implementation details 

The experiments are implemented on one NVIDIA RTX 2080Ti 

PU and based on the detectron2 object detection framework [29] . 

tochastic gradient descent (SGD) with momentum 0.9 is used to 

pdate parameters. This paper uses a cosine learning rate sched- 

le at the first ten epoch for warm-up. When the warm-up is fin- 

shed, the learning rate is initialized as 0.002. After 40 epochs the 

earning rate decreases from 0.002 and the weight decay value is 

.0 0 01. The batch size is set to 6 in this paper and we train 50

pochs for all datasets. The commonly used mean average preci- 

ion (AP50), mean average recall (AR50) and F1 score are applied 

o evaluate the methods. Each model is run ten times and the re- 

ults with mean and standard deviation are given. 

.3. Comparisons and discussions 

Results on MPSSD Table 2 shows the number of parameters and 

LOPS of different backbones. The amount of parameters refers to 

he total weight parameter of all the parameterized layers of the 

odel. FLOPS is defined as floating point operations, and can be 

sed to imply the complexity of models. One FLOPS can be de- 

ned as an addition and a multiplication. Table 2 illustrates that 

he ResNet network and its variants are less complicated and re- 

uire less memory than VGG network [23] . The amount of param- 

ters of ResNest-50 is similar to ResNet-50 while the FLOPS is a 

ittle bigger than ResNet-50, which shows that the complexity of 

esNeSt-50 network is between ResNet-50 and ResNet-101. 

Table 3 shows the comparisons on MPSSD dataset. Ours 

chieves the best performance even without deformable convo- 

ution based ResNeSt module, which proves the effectiveness of 

MFCA-Net and RoI Align module for defect detection task. We 

an get a better performance with deformable convolution based 

esNeSt module, which illustrates the superiority of deformable 

onvolution based ResNeSt compared with ResNet on extracting 

iny defect features. 

We compare HMFCA-Net with SOTA attention methods 

9,20,28] on MPSSD dataset. For fair comparison, we use Faster 

-CNN as detector and ResNeSt-50 along with FPN as backbone 

etwork. The result is shown in Table 4 , and Fig. 6 shows the

rror bar of related methods. Our HMFCA-Net outperforms FcaNet 

y 0.44% and outperforms SE block by 1.87% on F1 score, which 

roves that HMFCA-Net is better at finding important channels 

elated with defect features. 

Results on DAGM Table 5 shows the results on DAGM dataset. 

urs (without dc ∗ based ResNeSt) performs better than the base- 

ine Faster R-CNN method and ours achieves the best performance 

ith the addition of dc ∗ based ResNeSt network. Besides, we eval- 

ate the inference speed of different methods, where the inference 

peed of ours is slightly lower than EDD-Net [7] . However, ours 
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Table 3 

Performance on MPSSD dataset. dc ∗ represents the deformable convolution. 

Model Backbone AP50(%) AR50(%) F1 Score(%) 

One stage: 

YoLo v4 [1] ResNet-50 67 . 1 ± 0 . 56 – –

RetinaNet [18] ResNet-50 75 . 40 ± 0 . 31 85 . 98 ± 0 . 43 80 . 26 ± 0 . 36 

Two stage: 

Cascade R-CNN [2] ResNet-50 76 . 80 ± 0 . 24 86 . 17 ± 0 . 31 81 . 34 ± 0 . 27 

Faster R-CNN [21] ResNet-50 77 . 09 ± 0 . 20 86.36 ±0.09 81.46 ± 0.15 

Ours (without dc ∗ based ResNeSt) ResNet-50 77 . 72 ± 0 . 15 86 . 74 ± 0 . 06 81 . 98 ± 0 . 11 

Ours ResNeSt-50 79 . 79 ± 0 . 10 88 . 12 ± 0 . 14 83 . 75 ± 0 . 12 

Fig. 6. The error bar of SE block [9] , CBAM [28] , FcaNet [20] and HMFCA-Net. 

Table 4 

Comparison of existing attention modules. 

Methods Detector AP50 (%) AR50(%) F1 Score(%) 

+ SE block [9] Faster R-CNN 78 . 56 ± 0 . 06 85 . 48 ± 0 . 08 81 . 88 ± 0 . 07 

+ CBAM [28] Faster R-CNN 78 . 88 ± 0 . 13 86 . 72 ± 0 . 09 82 . 60 ± 0 . 11 

+ FcaNet [20] Faster R-CNN 79 . 34 ± 0 . 13 87 . 69 ± 0 . 18 83 . 31 ± 0 . 15 

+ HMFCA-Net Faster R-CNN 79 . 79 ± 0 . 10 88 . 12 ± 0 . 14 83 . 75 ± 0 . 12 
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chieves better performance at the same inference speed level. The 

roposed method can achieve the accuracy and speed request in 

ndustry product line. 

Ablation study and qualitative visualization To demonstrate 

he effectiveness of HMFCA-Net, deformable convolution-based 

esNeSt network and RoI Align, four ablation experiments are de- 

igned to compare with original Faster R-CNN using ResNet-50 

nd FPN as the backbone. The ablation study on MPSSD dataset 
123 
s shown in Table 6 . We can see that just changing the backbone

o ResNeSt-50 improves performance, which shows the superiority 

f ResNeSt on extracting tiny defect features. With the help of de- 

ormable convolution, defects with various shapes are easier to be 

etected. Besides, it can be seen that the RoI Align can effectively 

mprove the performance since it can decrease the localization er- 

or caused by extreme aspect ratio. HMFCA-Net helps the model 

o get more targeted defect features through weighing different 

hannels adaptively. The proposed method (Faster R-CNN + de- 

ormable convolution-based ResNeSt network + HMFCA-Net + RoI 

lign) achieves the best performance. 

Fig. 7 shows the extracted features on Res2 layer of different 

ethods. Compared with features extracted by traditional Faster 

-CNN and Cascade R-CNN method, HMFCA-Net pays more atten- 

ion to defect-related regions and retains more defect information, 

hich proves the effectiveness of HMFCA-Net for defect detection 

ask. 
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Table 5 

Performance on DAGM dataset. 

Model Backbone AP50(%) AR50(%) F1 Score(%) FPS 

EDD-Net [7] EfficientNet-B0 95 . 41 ± 0 . 37 98 . 53 ± 0 . 34 96 . 94 ± 0 . 35 33.5 

EDD-Net [7] EfficientNet-B1 97 . 14 ± 0 . 21 98 . 28 ± 0 . 25 97 . 70 ± 0 . 22 28.1 

EDD-Net [7] EfficientNet-B2 96 . 00 ± 0 . 23 97 . 25 ± 0 . 27 96 . 61 ± 0 . 26 24.3 

Faster R-CNN [21] ResNet-50 97 . 58 ± 0 . 17 98 . 23 ± 0 . 14 97 . 90 ± 0 . 15 28.8 

Cascade R-CNN [2] ResNet-50 97 . 68 ± 0 . 15 98 . 36 ± 0 . 21 98 . 02 ± 0 . 18 12.9 

RetinaNet [18] ResNet-50 97 . 85 ± 0 . 31 98 . 53 ± 0 . 19 98 . 17 ± 0 . 25 27.4 

Ours(without dc ∗ based ResNeSt) ResNet-50 97 . 76 ± 0 . 15 98 . 50 ± 0 . 17 98 . 13 ± 0 . 16 22.9 

Ours ResNeSt-50 98 . 17 ± 0 . 28 98 . 66 ± 0 . 23 98 . 41 ± 0 . 26 19.2 

Cascade R-CNN [2] ResNet-101 97 . 74 ± 0 . 10 98 . 48 ± 0 . 09 98 . 11 ± 0 . 09 10.9 

Faster R-CNN [21] ResNet-101 97 . 90 ± 0 . 09 98 . 57 ± 0 . 05 98 . 24 ± 0 . 07 23.0 

RetinaNet [18] ResNet-101 98 . 00 ± 0 . 11 98 . 61 ± 0 . 03 98 . 30 ± 0 . 07 21.4 

Ours (without dc ∗ based ResNeSt) ResNet-101 98 . 79 ± 0 . 06 98 . 86 ± 0 . 07 98 . 82 ± 0 . 06 18.3 

Ours ResNeSt-101 98 . 85 ± 0 . 04 98 . 96 ± 0 . 06 98 . 90 ± 0 . 05 14.1 

Table 6 

The ablation study. 

Module Faster R-CNN 

ResNeSt-50 ✗ 
√ √ √ √ 

RoI Align ✗ ✗ 
√ √ √ 

dc ∗-based ResNeSt-50 ✗ ✗ ✗ 
√ √ 

HMFCA-Net ✗ ✗ ✗ ✗ 
√ 

AP50 77.07 77.70 78.89 79.06 79.79 

Fig. 7. Visualization comparisons of different models. The columns are respectively: 

(a) original images; (b) Features learned by Faster R-CNN; (c) Features learned by 

Cascade R-CNN; (d) Features learned by our HMFCA-Net. 
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. Conclusion 

This paper proposes HMFCA-Net to get detailed features of 

iny defects, which pays more attention to defect-related regions 

hrough multi-frequency information and local cross-channel inter- 

ction. 2D DCT on several frequency components helps with get- 

ing more information about defects, and local cross-channel in- 

eraction keeps the straight correspondence between channels and 

heir weights. Besides, deformable convolution-based ResNeSt net- 

ork takes advantage of deformable convolution and ResNeSt net- 

ork and helps the model to detect defects of various shapes. RoI 

lign avoids the quantization process in RoI pooling and decreases 

ocalization error of defects with extreme aspect ratio. This pa- 

er also proposes a mobile phone surface scratch dataset (MPSSD 

ataset). Extensive experiments on MPSSD dataset and DAGM 

ataset demonstrate the effectiveness of the proposed method. 

he proposed method achieves F1 score of 83.75% on MPSSD 
124 
ataset and 98.41% on DAGM dataset, which performs best on both 

atasets. 

Future work will include: (1) extending the proposed method 

o more types of mobile phone defects; (2) exploring to improve 

he inference speed. 
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