
Path Updating Tree based Fast Path Planner for Unpredictable
Changing Environments

Chuangqi Wang, Bin Chen and Hong Liu∗

Abstract— For changing environments, although lots of plan-
ning algorithms have focused on how to get a valid and short
path, seldom planning algorithms can be employed to extract a
sustaining valid path. Especially for large-scale environments,
getting a sustaining valid path is required to make intelligent
decisions for robots. In this paper, a method of Path Updating
Tree (PUT) is proposed to get such a sustainingly valid region
path, which approximately estimates the environment using
extended nodes in the projected Cspace. Each extended node
is used to reflect local crowding information in this paper. An
approximate path, which connected goal and start, is generated
based on each region’s collision possibility, reachable possibility
and path length. With environment changing, nodes of PUT are
updated and new region paths are generated by regrowing if
necessary. Then a two-level path planner is introduced with
PUT and local path generator to distribute the computational
resource properly. The proposed method has shown to be
efficient in large-scale scenarios with crowded obstacles.

I. INTRODUCTION

Path planing has many applications in robotics, bioinfor-

matics, computer-aided design (CAD) and etc.. The presence

of randomized algorithms, such as popular probabilistic

roadmap methods (PRM) [1] and rapidly-exploring random-

ized tree (RRT) [2], has contributed to path planning research

significantly. Their variants have been devoted to static and

changing environments extensively [3-5]. However, in a large

scale with high DOFs, path planning remains a challenge.

Recent works solve those problems by the idea of anytime

planning [6-7]. These methods seem promising because of

their real-time performance. However, they encounter great

challenges for mobile agents such as high DOFs, drastic

moving and the disordered obstacles and so on.

For changing and dynamic environments, a number of

replanning algorithms have been proposed, including DRM

[8], DRRT [9] and ADRRT [10]. Since a new solution

is extracted more efficiently than replanning from scratch,

they are competent for dynamic environments in a certain

sense. However, much computational resource is cost on

generating parts of solutions that will not be used. Therefore,

a replanning strategy is needed to make a decision on which

parts need to be replanned or exploited. For unpredictable

changing environments, since global environment is partly

unknown, exploring is needed to generate the guiding infor-

Chuangqi Wang is with the Engineering Lab on Intelligent Perception for
Internet of Things(ELIP), Shenzhen Graduate School, Peking University,
China. chqwang.prc@gmail.com

Bin Chen is with Harbin Institute of Technology at Weihai.
*Corresponding Author: Hong Liu is with the Engineering Lab on

Intelligent Perception for Internet of Things(ELIP), Shenzhen Graduate
School, Peking University, China. hongliu@pku.edu.cn

mation for each iteration. And then the local path is extracted

for robot to follow it.

In [11], local region information is used to make decision

on how and where to sample. It’s effective to generate a valid

and safe path guided by the region path. For changing and

dynamic environments, it will also be beneficial to evaluate

the surrounding region of each node, not just to check each

node whether in collision since information of surrounding

region can be evaluated the possibility of this region to keep

free further. The more crowded the region is, the less possible

the node keeps collision-free.

In existed algorithms [9-10,12], samples of exploring is

quite dense and still use short edges to connect configura-

tions. And different nodes in different regions are treated

equally when searching a solution path. Apparently, it costs

much time to update these samples in replanning and some

nodes are unnecessary to check their collisions since the

robot is not reachable in a short time. Therefore, in order

to speed up the path planner for a solution, exploring can

be sampled sparely and nodes can be connected with longer

edges. Moreover, the reachable possibility of each node is

estimated, which represents the possibility that the robot will

traverse this node. The higher reachable possibility the node

has, the larger weight the node is given when a solution is

generated.

In this paper, utilizing these ideas, we aim to present a

fast two-level path planner to assign computational resource

for exploring globally and exploiting locally tailored in

unpredictable changing environments. In high level of Path

Updating Tree (PUT), to explore environments, an exploring

tree is grown with a large step mounted to qnear on the

direction to qrand and all the extended nodes are stored and

used to evaluate surrounding regions for collision probability.

And then the approximate region path is extracted based on

collision possibility, reachable possibility and path length.

With environment changing, each node of Path Updating

Tree (PUT) is updated to extract the new approximate region

path. Accordingly, low-level random exploring tree is grown

to get a local path segment followed by the generated

approximate region path.

Main contribution of the proposed method can be conclud-

ed as follows:

(1)Path Updating Tree (PUT) is proposed to explore the

environment globally by updating the extended nodes.

(2)The fast path planner with two-level is introduced to

separate exploring globally with exploiting locally guided by

the PUT to distribute computational resource more properly.

Here is the organization of this paper. Some related works

1529

Proceedings of the 2012 IEEE
International Conference on Robotics and Biomimetics

December 11-14, 2012, Guangzhou, China

and motivation are described briefly in Section II. Section

III shows the framework of the new path planner and details

of PUT are described separately in Section IV while the

local path generator is introduced in Section V. In Section

VI, simulation experiments in 3D virtual environments are

demonstrated and analyzed. Section VII draws final conclu-

sions.

II. RELATED WORKS

As a famous single query method, RRT is one of the

widely used methods in static environments. The basic RRT

algorithm grows a searching tree from the initial configura-

tion qstart to the goal configuration qgoal . It will be more

efficient if the extended direction is generated randomly

with probability of 1 − pb and is the goal configuration

with probability pb, see [2]. In order to apply to different

environments, many related works [6,13,16,17,18] have been

proposed utilizing explored information, balancing explo-

ration and exploitation and etc..

A. Dynamic Exploring Tree

Dynamic exploring tree is introduced firstly by Dave

Ferguson [9], which is a replanning algorithm that trims

the random exploring tree rooted on the goal configuration

in changing environments, since replanning from scratch

costs much time, and even it is impossible in some cases.

Dynamic exploring tree generates a new solution fast and

efficiently by utilizing the previous tree as much as possible.

In [10], anytime and replanning strategies are combined and

better solution can be extracted in costmap. However, for

large-scale changing environments with high DOFs, dynamic

exploring tree is not fast and even not competent since nodes

are dense. In addition, The trimmed subtrees are used to

generate a new solution for the next iteration in [5].

B. Two-stage Path Planner

Earlier work among moving objects is a PRM-based

method for planning a path [16]. Firstly a roadmap is built

and parts of the roadmap are updated according to moving

objects. Then RRT is used to enhance the roadmap if the

updated roadmap still fails.

In [12] [17], a two-stage approach is proposed to plan

a path in environments with moving obstacles. Local path

is planned by the second stage guided by a global path

extracted by dynamic roadmap constructed by maintaining

approximate information about the dynamic connectivity.

Meanwhile, local path is updated with environments chang-

ing. The node in the global path is used as a subgoal

to guide a local tree growing which is similar with our

previous work [18], which is local DRM guided by raw RRT.

Since these methods are based on the roadmap of PRM,

the roadmap in pre-processing stage needs to be constructed

off-line. All nodes must be stored, but a lot of them are

redundant and even unreachable for a single-query problem.

And quality of the planner is somewhat dependent on the

sample coverage. Moreover, a global path is just a sequence

of valid nodes which do not take surrounding information

into consideration. Therefore, nodes in the path may be in

collision right now and replanning has to be executed.

Fig. 1. A two-level path planner with PUT

III. FRAMEWORK

Our approach proceeds in two levels, globally exploring

level and locally query level. In the first level, a Path

Updating Tree is grown in a larger step without checking the

validity of edges in projected low-dimension space. And an

approximate region path is extracted by PUT, to guide a local

exploring tree to grow. In the second level, guided by the

approximate region path, the local tree is grown like ERRT

[13] and the local path is extracted. The main distinction is

that changes of the environment are mainly manifested by

the high-level PUT through updating extended nodes in the

tree, and the valid path segment still generates even if the

local path fails to extract. The illustration of PUT in Cspace
is shown in Fig.1. In the picture, PUT is grown rooted at the

goal configuration while the local path generator is rooted

at the start configuration with different steps in different C-

spaces separately. The local path segment is extracted from

the low level tree and guided by the Waypoint Cache which

stores some nodes of region path extracted from high level.

When the local valid path segment is to be in-collision,

feedback will be given to the high-level and replanning will

be executed.

A framework of fast single-query path planner is designed

with PUT and local path generator connected with WayPoint

Cache. The flowchart of this approach is shown in Fig.2.

The high-level PUT is used to explore the environment

approximately while in the low-level, the valid path segment

is extracted in a local region guided by the approximate

region path given by the high-level. These two parts are

presented by two dotted boxes in Fig.2 respectively.

At the beginning, PUT is grown and then the approximate

region path Lglobal path is extracted and stored into Waypoint

Cache. Several nodes of Waypoint Cache will be sent to the

local path segment generator to plan a valid path segment

in a local region, the number of which is determined by

the coverage of the local region. From Fig.2, it can be seen

that PUT guides to generate the local path segment through

Waypoint Cache, while the local path segment generator

can give feedback to the high level directly through trigger

mechanism which is marked by blue thick line. As shown in

the blue area of Fig.2, replanning is invoked each time when

1530

Fig. 2. Overview flowchart of the RM-RRTs path planner

it encounters a perspective collision in the next step. Then

details of two-level trees are presented in next two sections.

IV. PATH UPDATING TREE

As mentioned previously, PUT is used to memorize the

explored information of environments inspired by DRRT [9].

For each iteration, the approximate region path between the

goal location G and the current location Cagent is extracted.

Details of PUT are given as following.

A. Projection Space

The proposed idea of building a updating tree is to eval-

uate regions as a guider. In configuration space, especially

for high-DOF agents such as manipulators, it’s difficult to

introduce information of working space into Cspace and

computational complexity increases rapidly with dimension

increasing. In the premise of effectiveness of the guided

information, a low-dimensional projected space can be used

to evaluate these regions. To project primal space to lower

but effective space, there are many methods in computer

vision. Here, influence degree is used as a standard to select

dimensions inspired by feature selection. Specifically, when

rotating/translating the same degree, DOFs which have the

maximum scanning size are selected and shown as Formula

1. Moreover, the calculation of path length can be weighted

based on this characteristic.

SelDOFs = {d|Top k(SSize(d)),d ∈ DOFs} (1)

here, DOFs donates the set of all DOFs and SSize(d)
evaluates scanning size for d-th DOF.

B. Updating Nodes of PUT

Evaluating regions is important since an agent should be

guided to move such regions near the goal location and

with a low collision probability [19]. Therefore, nodes of

PUT should be updated based on two properties: collision

possibility and reachable possibility. And the region path is

extracted by these properties, besides path length.

1) Collision Possibility: Nodes could be used to describe

how sparse the surrounding region is. In order to avoid the

difficult area crowded by obstacles possibly, the collision

probability is measured by the minimum distance between

the node i and obstacles:

Cp(i) = MIN
(
dist(i,O j),∨O j ∈ ∑(O)

)
(2)

here, ∑O is the set of obstacles and dist(i,O j) denotes the

distance from the node i to the obstacle j, which is shown

by some nodes with yellow area in Fig. 3. For example,

the length of path1 is shorter than that of path2. However,

considering the collision probability of each node, path2 is

chosen as an approximate region path since path2 has larger

collision-free area around nodes.

Fig. 3. Choosing the approximate region path

2) Reaching Possibility: Reaching possibility of each n-

ode is denoted as the possibility that a robot traverses the

region donated by this node. Obviously, for a mobile agent,

the less the distance between region i and the momentary

location is, the higher reachable possibility the region is,

shown as:

Rp(i) ∝
K

dist(i,goal)
(3)

here, the equation shows the negative correlation between

reaching possibility and the distance.

C. Algorithm of PUT

The processing of PUT is shown in Algorithm 1 and three

details different from DRRT are explained.

Firstly, since nodes might become invalid due to unpre-

dictable movements of obstacles, it is a waste of time to

evaluate effectiveness of edges. Meanwhile, because of just

exploring approximately, the step Δq by which the high-

level PUT grows can be enlarged as stated in Section I.

Even if an obstacle is ignored, it will be dealt with by low

level. Therefore, Δq should be selected in a larger scale step.

However, Δq is not set arbitrarily large although the larger Δq,

the lower the complexity of RRT. At least, it should be less

1531

than the coverage of local region in order to ensure at least

one guided node in the local region, which can be presented

as:

Δq < C(LRegion) (4)

Secondly, in the standard DRRT algorithm, a nearest

configuration qnear is searched based on the distance in the

function of NearestNeighbor(). Whereas, in our algorithm,

extending nodes should consider collision probability and

reaching probability which is evaluated by the level number

of nodes since the tree is rooted as the goal configuration

shown in Fig. 3. Therefore, the procedure NearestNeighbor()
can be implemented based on Costpath as:

Costpath = k1

n

∑
i=1

(Rp(i) ·Cp(i))+ k2

n−1

∑
i=1

dist(qi,qi+1) (5)

here, the function dist() denotes the distance between two

configuration nodes while Cp(i) and Rp(i) mean collision

probability and reaching probability. Moreover, k1 and k2

are chosen as weights to balance the safety and the length

of a path.

Thirdly, the number of WayCache points is related to the

coverage of a local region, which doesn’t exist in DRRT.

Once replanning is invoked, the method regenerates an

approximate region path with Δq and an adaptive Pb.

In algorithms 1, when PUT is invoked for the first time,

GrowRRT (T) (line 2-10) is executed to build a initial

dynamic tree. Then information of nodes in the dynamic tree

is updated by the procedure U pdateNode(T) (line 12-28).

In the procedure U pdateNode(T), since mobile agent has

moved to a new location, each node is judged whether in

the region of new environments or not. If not, the subtree

rooted at this node will be trimmed (line 14). Then if the

node is in collision, it will be marked as invalid and weighted

as a large number and then several nodes can be grown from

its parent node (line 18-21). Otherwise, it will be reevaluated

if it is collision-free (line 24). At last GrowRRT () will be

invoked to grow the existed tree. In these two procedures,

γ(i) of each node is marked based on collision probability

and reaching probability.

V. LOCAL PATH SEGMENT GENERATOR

By Waypoint Cache, local path segment generator is

invoked after the region path is extracted by PUT. Based

on the coverage of a local region, a certain number of nodes

will be set as Waypoint to guide the low-level tree’s growth

while the next node of approximate region path is selected as

a subgoal. Under a certain bias with qwaypoint , the coverage

of local region has a negative effect on the efficiency of

low level. Meanwhile, in some difficult situations, even in

small local region, the path to subgoal is difficult to extract,

in order to ensure an accessible path segment in a fixed

time interval, a maximum path segment can be extracted

if the complete path to subgoal fails. Here, an optimal path

segment is extracted if the complete path segment is not

found. The local path segment generator is similar with the

procedure of ERRT except the optimal path segment.

Algorithm 1: Path Updating Tree

Input: Cglobal ,CCurrent
Output: Papproximatepath

1 if the f irsttimeinvoked then
2 \\GrowRRT (Papproxpath);
3 while k≤Max iteration and GapSatis f ied() do
4 qrand = ChooseState(Pb);
5 qnear =

NearestNeighborCostpath(qrand ,Papproxpath);

6 qnew = Extend(qnear,qrand ,Δq);
7 qnew.γ = Mark γ(qnew);
8 Papproxpath.add(qnew);
9 end

10 end
11 else
12 \\U pdateNode(Papproxpath);
13 for k in range(Papproxpath.Getsize()) do
14 if Outo f range(qk) then
15 Trimtree(qk);
16 end
17 else
18 if Iscollision(qk) then
19 qparent = qk.GetParent();
20 Papproxpath.Invalid(qk);
21 CreateTreeFromNode(qparent);
22 end
23 else
24 qnew.γ = Mark γ(qk);
25 end
26 end
27 end
28 GrowRRT (Papproxpath);
29 end
30 LoadWayCache(C(LRegion));

VI. EXPERIMENTS AND ANALYSIS

In order to evaluate the proposed method, hundreds of

simulation experiments are implemented in 3D workspace

with a manipulator simulator for 6-DOF Kavasaki FS03N,

which is mounted on a mobile base. In experiments, the time

of replanning and success rate are discussed for unpredictable

and changing environments.

A. Experiment Setup

All of our experiments are carried out on personal comput-

er with a processor 2.71 GHz with 2 GByte of memory. The

planner is implemented in C++ and the collision checks are

used with PQP 1.3, an open-source 3D collision detection

library. The only information we are assuming the agent

has access to during planning is the position information

of dynamic obstacles. Fig.4 demonstrates the scenarios of

designed environments.

The differences of these groups are mainly the scale

and types of obstacles. Firstly, the complicated pragmatic

environment has been simulated in which all obstacles are

1532

(a) Scenario of experiment group I

(b) Scenario of experiment group II

(c) Scenario of experiment group III

Fig. 4. The scenario of experiment group I, II and III

simplified by pillars. To verify our method’s efficiency

further, floating obstacles are used to influence different

DOFs. The last one is a more complicated environment with

stationarily and randomly moving obstacles which testifies

the approach applied into a larger scale. Since dynamic

obstacles move (translate) and rotate by a random step along

with time, trajectories become unpredictable. Setting of these

experiments are listed in Table I. Here, r, oi, s and no
TABLE I

DIFFERENT SCENARIOS OF EXPERIMENTS

Sizes Group I Group II Group III

r 30×20×90 30×20×90 30×20×90

o1 4×6×30 10×15×10 15×60×15

o2 6×6×60 − 40×40×50

o3 4×4×80 − 20×20×20

o4 − − 40×40×60

o5 − − 600×10×140

s 300×300×90 300×300×90 600×800×140

no 10,10,10 20 6, 5, 7, 3, 1

represents robot size, size of the ith obstacle, scene size and

the number of obstacles respectively. The size shown in Table

I is the AABB boundbox of obstacles conveniently.

Motion of unpredictable obstacles is defined by six pa-

rameters indicating the random translation steps and rotation

steps around the three Cartesian coordinates. The random

TABLE II

THE SETTING OF THE PROPOSED APPROACH

Settings Group I Group II Group III
δq 3,10 3,10 3,10
Δq 10,40 10,40 40,60

Curegion 60 60 80
Pro jS pace (DOFs) 3 3 3

walk steps are randomly chosen in (-3mm,3mm) while the

random rotation steps in (−30o,30o). Meanwhile the initial

positions of obstacles are randomly set automatically.

Table II describes the setting of our approach, in which

δq and Δq represent the translation step and rotation step of

two-level trees. The parameter Δq is set based on formula

(4) while δq should be set relying on manipulators. Then

the number of Curegion denotes the radius of the coverage.

And the last row Pro j Space donates DOFs of projection

space. For our simulated manipulator, the larger maximum

scanning size is, the closer the base would be. Therefore, the

3 DOFs of the manipulator’s base are used. In addition, the

distance metric is set to Manhattan distance weighted based

on maximum scanning size. k1 and k2 are set as one equally.

B. Analysis of Experimental Results

For each experiment, planing is deemed to fail when the

manipulator can’t reach its goal configuration within a time

threshold. For the first two scenarios, the time threshold is

30 seconds and for the last scenario is 60 seconds since the

scenario is much larger and more difficult.

1) Comparison with DRRT and MPRRT: Results of our

approach comparing with DRRT and MPRRT are shown in

Table III. The column of Tavg represents the average time

per replanning. The results show that Tavg is lower obviously

than others for all environments. For MPRRT, disconnected

subtrees need be pruned for each iteration and the number

of the subtrees is larger along with the iteration increasing

and some of them are useless for planning. Therefore, much

time is cost for each planning averagely. For our method,

three reasons mainly attribute to lower average time cost.

Firstly, different steps are used in high-level PUT with Δq
and low-level local path segment generator with δq while

DRRT and MPRRT need to grow the tree with a small

but same step δq. Therefore, a local valid path segment is

extracted if only less nodes are extended. Secondly, all nodes

of subtrees should be updated and trimmed for MPRRT as

long as in collision while our proposed method just updates

nodes of PUT and trims the nodes out of boundary. Based

on collision possibility and reachable possibility, the region

path makes the local path segment keep effective for a longer

time. Finally but importantly, because of the guidance of the

approximate region path, potentially local regions which are

crowded are also avoided more frequently.

The last row Srate in Table III denotes the rate of success

moving from a start configuration point to its goal point.

Results show that the success rate seems promising mainly

because the proposed method gets a local path segment for

each time guided by approximate region path and can direct

to avoid expensive region. However, for DRRT and MPRRT,

1533

TABLE III

EXPERIMENTAL RESULTS

Group Method Tavg Srate

I DRRT 1.40 36%
I MPRRT 2.8630 62%
I our method 0.7991 82%
II DRRT 0.80 46%
II MPRRT 2.609 52%
II our method 0.6066 79%
III DRRT − −
III MPRRT �3 53%
III our method 0.9120 71%

a global path must be extracted and regenerated for replan-

ning. Since MPRRT reuses branches from previous planning

iterations for ChooseState(), its success rate is higher than

that of DRRT which just trims invalid subtrees. However, for

a replanning iteration, more nodes are selected in the path,

which will be in collision right now. In our experiments,

DRRT always fails to extract the path in the limited iteration

steps specially since the scale of the environment is a little

large and the step is small.

TABLE IV

EXPERIMENTAL RESULTS OF group II

Planning Task Curegion Tupdate Tregrow Tl plan Tavg Srate

Task.1-100 �300 − − − − −
Task.101-200 300 0.0811 0.6157 0.1788 0.8755 60%
Task.201-300 200 0.1128 0.3195 0.1663 0.6086 75%
Task.301-400 100 0.1131 0.2860 0.1626 0.5617 81.25%
Task.401-500 80 0.1317 0.3238 0.1282 0.5838 78.57%
Task.501-600 40 0.1627 0.6411 0.1163 0.9202 72.73%
Task.601-700 10 0.1624 0.6286 0.0926 0.8846 66.67%
Task.701-800 �10 − − − − −

2) Influence of Coverage of Local Region: In Table IV,

detailed results in group II are given in order to analysis

influence of the coverage of local region. The parameters of

Tupdate, Tregrow, Tl plan denote average time spent in proce-

dures for each replanning: U pdateNode(), GrowRRT () in

Algorithm 1 and LowlevelPathsegmentGenerator.

In the worst case, the planner degenerates into a DRRT

planner in the projected space when Curegion is small (the

last row in Table IV). On the other hand, it degenerates

into a raw RRT and replans from scratch when it is large

(the first row in Table IV). When the coverage is small, the

number of generating the local path segment and exploring

environment are increasing. And then obstacle avoiding has

to be invoked frequently and guidance of PUT is not effective

while it’s large. For different problems, proper parameters

can be selected to consider these influences.

In addition, conclusion can be drawn that Tregrow accounts

for a large part of Tavg in comparison with others. This

is mainly caused by the characteristics of the PUT. Since

the procedure GrowRRT () is similar to the raw RRT , Non-

frontier nodes are also extended, which cause the number

of nodes to increase incrementally. Therefore, regrowing

trees cost much time for evaluating nodes. Meanwhile, Tl plan
is not changing significantly with the coverage changing

just because the local path segment is extracted when the

maximum iteration is reached. Finally, success rate Srate is

changing with the coverage and the maximum success rate

is reached in a proper coverage since Waypoint Cache lost

its guide and replanning is invoked frequently when the

coverage is not proper. At last, it’s worth mentioned that

Fig. 5. Snapped pictures of experiment group III

our method can be also applied in environments with static

obstacles. The last row in Table III shows results in group III.

Our method is more competent for environments with static

obstacles than MPRRT while DRRT always fails in such a

large scale. In Fig.5, several snapped and detailed pictures

are presented, in which the bold line is represented as local

path while the fine line is the approximate region path.

VII. CONCLUSIONS

In this paper, a method of path updating tree (PUT)

is proposed to generate an approximate region path as a

guider, which is designed especially for path planning in

a large-scale unpredictable changing environment. PUT is

integrated with several strategies such as evaluating different

regions which are not combined previously to the best of

our knowledge. Then PUT is introduced into a two-level

framework as high-level, in which a local valid path segment

is generated by low level and guided by PUT. Experimental

results show that our method can perform path planning

rapidly while avoiding unpredictable and cluttered obstacles

even in large scale environments. In further, the proposed

path planner can be used as an anytime planner to some

extent since Tl plan is less than 0.2s if these two-levels can be

executed concurrently. Although there are still a lot of works

to do such as automatically estimating parameters and etc.,

the results seem promising.

VIII. ACKNOWLEDGEMENTS

This work is supported by Nation Natural Science Foun-

dation of China(NSFC, No.60875050, 60675025), Nation-

al High Technology Research and Development Program

of China(863 Program, No.2006AA04Z247), Scientific and

Technical Innovation Commission of Shenzhen Municipali-

ty(No.JC201005280682A, CXC201104210010A).

REFERENCES

[1] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars,
Probabilistic roadmaps for fast path planning in high-dimensional con-
figuratin spaces, in IEEE Transactions on Robotics and Automation,
vol. 12, pp. 566-580, 1996.

1534

[2] S. M. LaValle and J. J. Kuffner, Rapidly-exploring random trees:
Progress and prospects, in Algorithmic and Computational Robotics:
New Directions, pp. 293-308, 2000.

[3] R. Bohlin and L.E. Kavraki, Path Planning using Lazy PRM, in IEEE
International conference on Robotics and Automation, pp.521-528,
2000.

[4] J. Kuffner and S. LaValle, RRT-Connect: An Efficient Approach to
Single-Query Path Planning, in IEEE International Conference on
Robotics and Automation, pp. 995 - 1001, 2000.

[5] M. Zucker, J.J. Kuffner and M. Branicky, Multipartite RRTs for
rapid replanning in dynamic environments, in IEEE International
Conference on Robotics and Automation, pp.1603-1609, 2007.

[6] J. Van den Berg and M. H. Overmars, Planning the shortest safe path
amidst unpredictably moving obstacles, in Proc. Int. Workshop on
Algorithmic Foundation of Robotics, pp.885-897, 2006.

[7] J. Vannoy and J. Xiao, Real-time Adaptive Motion Planning (RAMP)
of Mobile Manipulators in Dynamic Environments with Unforeseen
Changes, in IEEE Transactions on Robotics, vol. 24, pp. 1199-1212,
2008.

[8] M. Kalmann and M. Mataric, Motion Planning using dynamic
roadmaps, in IEEE International Conference on Robotics and Automa-
tion, pp.4399-4404, 2004.

[9] D. Ferguson, N. Kalra and A. Stentz, Replanning with RRTs, in IEEE
International Conference on Robotics and Automation, pp. 1243-1248,
2006.

[10] D. Ferguson, A. Stentz, Anytime, Dynamic Planning in High-
dimensional Search Spaces, in IEEE International Conference on
Robotics and Automation, pp. 1310-1315, 2007.

[11] S. Rodríguez, S. Thomas, R. Pearce, Nancy M. Amato, RESAMPL: A
Region-Sensitive Adaptive Motion Planner, in Workshop Algorithmic
Foundation of Robotics VII, pp. 285-300, 2008.

[12] S. Rodriguez, J.M. Lien and N.M. Amato, A Framework for Planning
Motion in Environments with Moving Obstacles, in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 3309-3314,
2007.

[13] J. Bruce and M. Veloso, Real-Time Randomized Path Planning for
Robot Navigation, in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 2383-2388, 2002.

[14] R. Alterovitz, S. Patil and A. Derbakova, Rapidly-Exploring Roadmap-
s: Weighing Exploration vs. Refinement in Optimal Motion Planning,
in IEEE International Conference on Robotics and Automation, pp.
3706-3712, 2011.

[15] M. Rickert, O. Brock and A. Knoll, Balancing Exploration and
Exploitation in Motion Planning, in IEEE International Conference
on Robotics and Automation, pp. 2812-2817, 2008.

[16] L. Jaillet and T. Simeon. A PRM-based motion planner for dynam-
ically changing environments, in IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp.1606-1611, 2004.

[17] J. Van den Berg and M. H. Overmars, Roadmap-based motion planning
in dynamic environments, in IEEE Trans. Robotics and Automation,
pp.855-897, vol. 21, 2005.

[18] H. Liu and W.W. Wan, A Subgoal-based Path Planning for Unpre-
dictable Environments, in IEEE International Conference on Robotics
and Automation, pp.994-1001, 2010.

[19] L. Guibas, D. Hsu, H. Kurniawati and E. Rehman, Bounded Uncer-
tainty Roadmaps for Path Planning, in Proc. Int. Workshop on the
Algorithmic Foundations of Robotics, pp. 199-215, 2008.

[20] L. Jaillet, J. Cortés and T. Siméon, ”Sampling-Based Path Planning
on Configuration-Space Costmaps”, in IEEE Transactions on Robotics,
vol. 26, pp. 635-646, 2010.

1535

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 450
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 450
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

