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Abstract—This paper proposes a novel cross correlation
function (CCF) extraction method based on convolutional neu-
ral network for time difference of arrival (TDOA) estimation or
further direction of arrival (DOA) estimation. CNN is utilized to
learn the relationship between the cross correlation localization
features and the pre-processed waveform signal which may
include not only the source signal but also the background
noise and reverberation. In contrast to many previous sound
source localization approaches, the proposed method focuses
on the spatial feature extraction. Two kind of outputs, grouped
or encoded CCEF, are designed to capture the implicit tendency
of location information. The experimental results demonstrate
that the proposed method outperforms the conventional TDOA
estimation methods under environments with different levels of
noise and reverberation.

I. INTRODUCTION

Sound source localization (SSL) is to determine the az-
imuth in the horizontal plane, the elevation in the vertical
plane or the distance of a sound source, employing the
signals received by several microphones. As a nature and
effective way for human-robot interaction (HRI), binaural
SSL using a pair of microphones equipped on both sides
of robot head become more and more important for several
decades.

Plenty of methods have been proposed for binaural sound
source localization, which mainly consist of three steps.
First, the binaural cues such as interaural time difference
(ITD) and interaural level difference (ILD) are extracted
from the received signals in the time-frequency (TF) do-
main. ITD mainly describes the time difference of a sound
source arriving at two ears, while ILD describes the level
difference [1]. Second, the off-line training is executed to
build the relationship between the spatial features and the
source location. The statistical models including Gaussian
mixture model [2], [3], deep neural networks (DNNs) [4] and
convolutional neural networks (CNNs) [5] are popular in this
stage. Third, online frame-wise or TF bin-wise localization
can be achieved via the trained statistical model.

Since ITD carries rich spatial information and TDOA-
based SSL approach can be conducted in real time, the
ITD extraction become more important for robust binaural
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SSL. Generalized cross correlation (GCC) methods combin-
ing with phase transform (PHAT) [6], Roth [7], smoothed
coherence transform (SCOT) [8] processors are the classical
approaches to estimate the TDOA between microphone chan-
nels. However, the performance may degrades seriously in
the presence of low SNR noise signal and high reverberation.

Therefore, several approaches have been proposed to im-
prove the robustness of SSL through obtain more accurate
localization feature. TF mask guided SSL methods aim to
combine TF mask with the generalized cross correlation-
phase transform (GCC-PHAT) or steered-response SNR [9],
[10]. It can derive accurate results by emphasizing more
reliable TF bins. The sinusoidal tracks were utilized to
represent the voiced speech which is sparse in the frequency
(spectrum) domain [1]. The main idea of aforementioned
methods to eliminate the effect of reverberation and noise is
based on the W-disjoint orthogonal (WDQO) assumption [11].
Inter-channel Phase Difference (IPD) enhancement based on
CNN is proposed to restore the contaminated IPD directly
extracted from the input signals [12].

Due to the aforementioned reasons, a novel cross cor-
relation extraction based on CNN is proposed. It directly
extract the localization features of direct-path signal from
the input signals in essence. Recently, deep learning based
SSL algorithms have been shown to give the state-of-art
performance in the DOA estimation and TF mask estimation.
In this study, the cross correlation function between left and
right ear signal is realized by the local convolution operation
of CNN. The experimental results with various levels of
noise and room configurations demonstrate that the proposed
method can extract accurate features for robust sound source
localization.

The rest of the this paper is organized as follows. Section
IT introduces the proposed binaural localization feature ex-
traction method in detail. Section III describes the evaluation
framework and experimental setup. The experimental results
with various acoustic environments are illustrated in Section
I'V. Finally, conclusions are given in Section V.

II. CNN-BASED ITD ESTIMATION

Fig. 1 illustrates the schematic diagram of the proposed
system for binaural sound source localization. During train-
ing, clean speech signal is spatialized by binaural room
impulse response (BRIR). Then noise signal is added to
the received signal. After divided into several frequency
bands by the gammatone filter bank, the mixture signals in
the time domain are fed to the CNN, named generalized
cross correlation net (GCCNet), in order to learn the feature
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Fig. 1. Schematic diagram of the proposed generalized cross correlation
CNN (GCCNet) system in training (top) and testing (bottom) phases.

extraction ability from the noisy and reverberant signal.
During testing, binaural signals are first processed by the
filter bank the same way as the training stage. Then the
filtered signals are utilized as input of the GCCNet. ITD is
obtained by picking the peak of the prediction of GCCNet.
Furthermore, ITD can be utilized for DOA estimation.

A. Pre-processing of Binaural Signals

The received binaural signals x;(n) which contain noise
and reverberation can be modeled as

xz;(n) = s(n) ® hiy(n) +v;(n),Vi=1,r (D

where ® denotes the convolution operation, n and % represent
the time sampling point, the index of left channel / and
right channel 7, s(n) denotes the sound signal emitted by
the source, h;(n) represents the impulse response between
the source and ears and v;(n) is the additive noise signal.

The binaural signals are first analysed by an auditory front-
end pre-processing, which is a bank of 32 gammatone filters
with center frequencies spaced uniformly on the equivalent
rectangular bandwidth (ERB) scale from 80 Hz to 8 kHz,
which almost covers the entire speech spectrum [13]. After
processed by the gammatone filter bank and a following half-
wave rectification, binaural signals are further enframed by
a window of 20 ms with a frame shift of 10 ms. The signal
sampling rate is 44.1 kHz in this work, the length of one
time frame is 882 time points.

There are two kind of data usually exploited as input
feature for learning-based SSL approaches. The first one is
inter-channel features such as ITD, ILD, cross correlation
function (CCF) [2], [4], [12], [14] or the subspace-based
features [15], [16]. The second one is the more original
information of the signal such as the real and imaginary parts
of short time fourier transform (STFT) [17], the ear signals
in the time domain [18] and so on. We take the binaural
signals in the time domain as the input of CNN. The signal
sampling rate is 44.1 kHZ, the final input data are generated
with a dimension of 32 x 882 x 2 (frequency bands x time
frame points X channels).
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Fig. 2. Cross correlation function (CCF) feature of 32 filter channels
extracted from binaural signals where the source is located at azimuth —65°
and elevation 0°. (a) clean sound signal. (b) noisy signal with signal-to-noise
ratio (SNR) at -5 dB.

B. CNN-based Feature Extraction

The cross correlation function (CCF) of binaural signals
is computed as

Ry, (T) =E [xl(n>xr(n - T)] ) 2

where FEJ[| denotes expectation. TDOA estimation 7 is
obtained when R, achieves the maximum [6]. However,
the cross correlation values may spread or smeared and make
it difficult to distinguish peaks in the presence of interference.
As shown in Fig. 2, it can be observed that the peak in the
summation for clean sound signal is sharper and smoother
than the one for noisy signal. And there may appear fake
peaks leading to wrong TDOA.

According to specific training targets, the output data is
divided into several groups along the frequency axis and then
fed into different sets of FC layers. The proposed two kinds
of output are describe as follows in detail.

Grouped CCF: For CCF computed from the clean bin-
aural source signals as the training target, N frequency
bands are considered as a group corresponding to one FC
layers set. It means that 32 frequency bands are divided into
several groups and all bands within a group shares the CNN
parameters. The cross correlation values fluctuate violently
as the frequency increase and adjacent frequency bands can
be regarded as having the similar characteristics.

Encoded CCF: Since the degree of fluctuation of CCF
presented in the high frequency bands makes it difficult to
learn the relationship as Fig. 2 shown. Although the CCF

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 07,2021 at 09:18:33 UTC from IEEE Xplore. Restrictions apply.



CONV1  CONV2

CONV3

FC layer set 1

. | FClayer set 2

FC layer set 3

FC layer set 4

882 . 867
y >
I :
2

Fig. 3.

contains more spatial information than ITD, the position of
the main peak in CCF is the most important information.
Furthermore, the role of the aforementioned weights of GCC
is to compensate for the presence or absence of signal power
[6]. The Gaussian encoding [17] of the main peak of CCF
is proposed instead of regarding the whole CCF as training
target. The desired output of each frequency band are the
maximum of Gaussian functions centered around the main
peak of CCF as

Rj - e(Lj—me)2/027 (3)
where L; denotes the discrete time lag at index j, L,
represents the lag corresponding to main peak. Here, o
controls the width of the Gaussian distribution, which is

formulated as

o(k) = f(k), @

where f(k) is the frequency-dependent function describing
the trend of reliability of the main peak as the frequency
increases, and we set f(k) to e~ %1#+3:8 in this work. The
width of Gaussian functions controlled by ¢ is narrower
than the true main peak, which makes it more robust in the
presence of noise and reverberation.

The CNN consists of an input layer, three convolutional
layers (CONV), three fully connected (FC) layers and an
output layer as illustrated in Fig. 3. Three convolutional
layers perform the cross correlation along the frequency
bins and time sample points axis, which aim to realize
the cross correlation between different channels. The kernel
size of the first convolutional layer is set to 1 x 16. The
second convolutional layer has a 2-D kernel of size 3 x 8
and the third one has a 2-D kernels of size 3 x 5. Each
convolutional layer is followed by rectified linear (ReLU)
activation function [19]. The number of nodes of each FC
layer is set to 512, 512 and 99 respectively. The last fully
connected layer is followed by sigmoid activation function.

C. Final TDOA Estimation

At last, all outputs of the corresponding FC layer sets are
stacked together and form a 32 x 99 dimensional output.
The TDOA estimation is obtained by picking the peak of
the CCF summation. We can also estimate TF-wise TDOA
from each frequency band.

354
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The architecture of GCCNet-Grouped.
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Fig. 4. Simulated scene and parameters of acoustic environments for
rooml. The average radius of heads in the CIPIC HRTF database is 7 cm
approximately.

III. EVALUATION
A. The Dataset

To evaluate the performance of the proposed system,
binaural signals are simulated by convolving clean speech
signals with the head-related impulse responses (HRIRs)
as Eq. (1) shown. There are 25 azimuths ranging from
[—80°, —65°, —55°, —45° 5° 45°,55°,65°,80°] (0°
locates at the middle front of the head) defined in interaural-
polar coordinates. HRTFs are measured for 45 different
subjects including 27 males, 16 females and KEMAR with
large and small pinnae in the CIPIC HRTF database [20].
In this work, the subject #21 (i.e., Kemar head) is selected
to generate spatial information received by binaural micro-
phones with 25 azimuths and one elevation (0° in constant),
which means the sources from the frontal plane are only
considered in the following experiments.

Room impulse responses for four rooms were also sim-
ulated via Roomsim toolbox [21] based on image method.
The simulated scene and detailed parameters of room size,
the distance between source and head, the head location in
each room and reverberation time (RTg) are listed in Table I
and illustrated in Fig. 4, respectively.

The speech recordings from TIMIT database [22] are
taken as the source signals. The training dataset contains 20
sentences randomly selected from the TIMIT training data,
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TABLE I
ROOM CONFIGURATION FOR TRAINING AND TEST DATASET

Dataset Room W(@m) | L(m) | H(m) | R (m) | Center of head (m) RTeo (sec)
rooml 10 6 (5, 3, 1.5) 0.2, 0.4, 0.6
training, validation | room2 6 5 1 (3, 2.5,1.2) 0.2, 0.4, 0.6
room3 6 4 1 2,2,1.2) 0.2, 0.4, 0.6

test room4 55 8 1 3.5, 15,1.2) 0.2, 0.4, 0.6, 0.8

while the validation dataset and test dataset both contain
7 sentences randomly selected from the TIMIT test data
respectively. After convolving each sentence with all 25
HRIRs, the babble noise from NOISEX-92 database [23] was
regarded as the interference, which was added to the audio
signals. For the training and validation dataset, the noisy
signals were generated with SNRs ranging from [0:10:30]
dB, while the SNRs for test dataset belong to the range of
[-5:10:25] dB.

B. Experimental Setup

The feature extraction ability of convolutional neural net-
works are trained to be frame-wise. For the CCF block
as training target, the whole CCF is divided into 4 parts
along the frequency and fed into 4 fully connected layer
sets respectively, which provides a good tradeoff between
frequency resolutions and computational cost.

TABLE II
PARAMETERS OF SIGNAL USED IN EXPERIMENTS.

Parameter Value
Sampling frequency 44.1 kHz
Window type hanning

Frame length (FFT length)
Frame overlap
Lag boundary
Frequency-related function

882 points (20 ms)
441 points (10 ms)
99 points ([-1.1, 1.1] ms)
f(k) — 670.1k+3.8

In this work, the feature extraction CNN were trained
under two kinds of acoustic conditions:

« using anechoic signals in the training set;
« using noisy and reverberant signals in the training set
(i.e., multi-conditional training, MCT).

For all experiments, one batch is composed of 128 frames
started from 11-th frame per signal, the learning rate is set
to 0.003 initially and divided by 3 every 10 epochs until the
performance of validation set is no longer improved. The
Adam optimizer is utilized to minimize the mean absolute
error (MAE) during training.

C. Methods for Comparison

Two TDOA estimation algorithms are compared with the
proposed approach. The first one is the classical cross cor-
relation approach [6] without specific weight. The disturbed
binaural signals obey the same pre-processing before extrac-
tion, where the mixed binaural signals were first processed
by a gammatone filter bank and a half-wave rectifier. Then

cross correlation of 32 frequencies with a lag range of
+1.1 ms was performed. This method is denoted as GCC.
The second method is DNN-based TDOA estimation with
integrated time-frequency masking [24]. Furthermore, the
model with implicit mask training procedure is selected for
comparison due to its outstanding performance. The number
of hidden units in LSTM is set to 160. The number of discrete
time delay, DFT bins and mel-frequency bands is set to 99,
882 and 30, respectively. Both Long Short-Term memory
(LSTM) in the whole DNN architecture contain 3 hidden
layers. During training, the early stop and the learning rate
attenuation strategies are as same as the training procedure
of proposed method. We call this approach TDOA-Mask.
Two proposed models for comparison are listed as follows:

¢ GCCNet-Grouped. The proposed feature extraction
CNN with the CCF separated into blocks as the training
target.

¢ GCCNet-Encoded. The proposed cross correlation ex-
traction CNN with the Gaussian function encoding the
main peak of CCF as the training target.

The root-mean-square error (RMSE) of time delay of

arrival was measured by

RMSE — % i (1) — 7(£)2, (5)

t

where t denotes the time frame index, 7' is the frame number,
7 denotes the TDOA estimated from mixture signal in each
frame and 7 denotes the true TDOA (experiments over full
frequency bands) or TDOA estimated from anechoic single
source signal (experiments across frequency sub-bands).

IV. EXPERIMENTS AND DISCUSSION
A. Anechoic Training

To evaluate the performance of feature extraction ability
for all comparison methods, the RMSE of the final TDOA
estimation across full frequency bands is measured. It can be
seen from Table III that both GCCNet-Group and GCCNet-
Encoded models have capacity to extract more accurate
cross correlation feature than the GCC and TDOA-Mask
do. Especially, the role of Gaussian function encoding can
be demonstrated by the experimental results that GCCNet-
Encoded model performs the best.

The performance of TDOA estimation for each frequency
band is also shown in Table IV. We estimate the TDOA
from the peak of each frequency band and then compute
the RMSE over all TF-wise results. It can be proved that
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TABLE III
THE RMSE OF TDOA ESTIMATION (MS) OVER FULL FREQUENCY BANDS FOR MODELS TRAINED IN ANECHOIC ENVIRONMENT.

SNR (dB) RTgo (s)
-5 5 15 25 0.2 0.4 0.6 0.8
GCC 0.295 0.260 0.248 0.246 0.224 0.274 0.338 0.350
TDOA-Mask 0.299 0.278 0.249 0.244 0.241 0.276 0.324 0.331
GCCNet-Grouped | 0.221 0.220 0.214 0.208 | 0.195 0.229 0.275 0.284
GCCNet-Encoded | 0.189 0.200 0.207 0.210 | 0.182 0.207 0.242 0.255
TABLE IV

THE RMSE OF TDOA ESTIMATION (MS) ACROSS FREQUENCY SUB-BANDS FOR MODELS TRAINED IN ANECHOIC ENVIRONMENT.

SNR (dB) RTe0 (s)
-5 5 15 25 0.2 0.4 0.6 0.8
GCC 0.246 0.239 0.239 0.205 0.236 0.239 0.237 0.236
GCCNet-Grouped | 0.226 0.227 0.227 0.227 0.226 0.223 0.222 0.220
GCCNet-Encoded | 0.151 0.150 0.150 0.149 | 0.149 0.150 0.152 0.154
TABLE V

THE RMSE OF TDOA ESTIMATION (MS) OVER FULL FREQUENCY BANDS FOR MODELS TRAINED IN MULTI-CONDITIONAL ENVIRONMENT.

SNR (dB) RTeo (5)
s 5 15 25 0.2 0.4 0.6 0.8
GCC 0295 0260 0248 0246 | 0224 0274 0338 0350
TDOA-Mask 0.089 0.069 0.051 0.032 | 0.058 0.063 0.073 0.069
GCCNet-Grouped | 0.185  0.195 0200 0203 | 0.179 0205 0225 0233
GCCNet-Encoded | 0.171  0.180 0188  0.192 | 0.173  0.190 0205 0215
TABLE VI

THE RMSE OF TDOA ESTIMATION (MS) ACROSS FREQUENCY SUB-BANDS FOR MODELS TRAINED IN MULTI-CONDITIONAL ENVIRONMENT.

SNR (dB) RTeo (5)
-5 5 15 25 0.2 0.4 0.6 0.8
GCC 0.246 0.239 0.225 0.205 0.236 0.239 0.237 0.236
GCCNet-Grouped | 0.237 0.235 0.235 0.233 0.237 0.240 0.240 0.240
GCCNet-Encoded | 0.134 0.136 0.139 0.142 | 0.136 0.137 0.140 0.143

the TF-wise localization features make the TDOA or DOA
estimation results more robust, which implicitly indicates that
the proposed method can be extended to the multiple sound
source localization. The GCCNet-Encoded TDOA estimation
model exhibits the strongest robustness especially in the low
SNR and high reverberation environment. This makes sense
as the accurate time delay information is mostly encoded by
the Gaussian functions for each frequency band.

B. Multi-conditional Training

The performance of different methods using multi-
conditional training procedure are listed in Table V. These
methods are tested in environments with various levels of
background noise and reverberation time. The performance
of TDOA-Mask is outstanding. The possible reason is that
the architecture of TDOA-Mask makes it possible to di-
rectly generate the TDOA from the masked GCC-PHAT.
Meanwhile, our models only produce the CCF feature. Then
TDOA are calculated by picking the peak. It also can be

356

observed that the performance of the two CNN model are
comparable and are both better than the results presented in
Table III, the RMSE of GCCNet-Encoded ranges from 0.171
to 0.215 ms in Table V, while from 0.182 to 0.255 ms in
Table III.

Similarly, Table VI presents the RMSE of TDOA esti-
mation across each frequency sub-band. As can be seen, the
proposed algorithm GCCNet-Encoded lead to large improve-
ments over GCCNet-Grouped and baseline method, 0.134 to
0.143 ms vs. 0.233 to 0.240 ms and 0.205 to 0.246 ms.

C. Localization in Realistic Environment

The proposed method is also evaluated in realistic environ-
ment. The binaural signals are recorded by KU100 dummy
head. In Fig. 5, the dummy head is placed in the center of
an office and there are two microphones equipped within
the “ears” for signal collection. The office environment is
of dimensions (6 m x 5 m x 3 m). The RTgg is 0.3 s
approximately due to the material of the walls, the floor
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Sound localization in realistic environment.

Fig. 5.

and the roof of the room. The SNR is around 20 dB. The
distance between the sound source and the dummy head is
fixed at 1 m. The azimuth and elevation configuration of real
recordings is as same as the one of simulated data.

In Table VII, our models trained using anechoic data
perform well and the ones trained using multi-conditional
data are comparable with TDOA-Mask. It also demonstrate
that the proposed methods relies less on the type of training
data.

Training Procedure ~ Anechoic MCT
GCC 0.500
TDOA-Mask 0.411 0.257
GCCNet-Grouped 0.367 0.315
GCCNet-Encoded 0.316 0.279
TABLE VII

THE RMSE OF TDOA ESTIMATION IN REALISTIC ENVIRONMENT.

V. CONCLUSIONS

This paper presents a novel localization feature extraction
approach of TDOA estimation or for further DOA estima-
tion. Two kinds of training target, CCF-grouped and CCF-
encoded, are designed for model training. The proposed
feature extraction CNN was able to directly extract the
accurate spatial features from the filtered waveform binaural
signals. Experimental results demonstrate that the encoding
procedure of the main peak of CCF performs the best over
almost all acoustic environments. In this work, the role of the
CNN can be viewed as localization feature extractor for each
time frequency bin. We will extend this work for multiple
sound source localization in the future.
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