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Abstract—Ground plane segmentation is quite a challenging
fundamental problem for monocular mobile robot navigation due
to the dynamic unknown environments and the initialization of
coordinate system which induces outliers to the bottom region
of interest. Current geometric-based methods are mostly limited
to deal with multiple plane segmentation in stationary known
scene from depth sensor. In this paper, we propose a robust real-
time trust region ground plane segmentation method to handle
the unknown environments with a single camera. The proposed
method utilizes Radius Outlier Removal filter to exclude the
outliers of candidate points generated by the state-of-the-art
method, Direct Sparse Odometry (DSO), then candidate points
in the trust region are provided to fit the ground plane. The
coefficients of fitted plane will be used to remove the outliers
and to compensate omissive points. Therefore the ground plane
segmentation is refined iteratively. Comprehensive experiments
on the TUM monoVO dataset demonstrate that our method
outperforms the random sample consensus (RANSAC) methods
on time consumption and robustness in the unknown scenes, even
when the initial coordinate system is pitched and rolled.

I. INTRODUCTION

The critical process of visual-based navigation systems is
developed to provide real-time robust obstacle avoidance func-
tion and plane segmentation which is considered as the pre-
process of obstacle recognition. Plane segmentation technolo-
gy has been widely applied in computer vision applications,
for instance, augmented reality applications (AR) [1], cleaning
robot [2], assisting device for visually impaired people [3] and
driverless car [4]. Planar structures are computed by depth in-
formation [5], [6]. However, the high cost of 3D scanners and
the need of proper calibration of stereo cameras render both
sensor modalities unfavorable for consumer grade applications.
Therefore, this motivates researches for better alternatives.
There are two kinds of plane segmentation methods: classifier-
based and geometric-based methods. Classifier-based methods
need large 3D ground truth datasets to train the classification
model for objects segmentation which is computationally ex-
pensive. For geometric-based methods, existing ground plane
segmentation in navigation system also faces several difficul-
ties. First, during robot initialization, the location of coordinate
system may cause some of original plane points misidentified
as obstacle points, whose coordinate value is relatively small.
Second, the outliers of point clouds increase the difficulty of
plane segmentation. From the perspective of the density, point
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clouds are classified into sparse and dense point clouds. Dense
point clouds generated by depth sensors, which require a large
amount of computation. And sparse point clouds reconstructed
environments using a single camera, which is an alternative
for its low cost and computation in spite of bringing some
extra problems. Comparing with dense point clouds, the sparse
point clouds lost the connectivity and object construction
information to exchange for high efficiency. No matter which
kind of point clouds is used for ground plane segmentation,
they all need to face the challenge of not knowing the
whole shape of objects in advance when environments are
reconstructed through Simultaneous Localization and Mapping
(SLAM) system or Visual Odometry (VO).

There are different plane segmentation methods in the
literature. Work shown in [7], using a classifier that has
access to full 3D models results in better performance in
segmentation than using a single-view point clouds, while this
method is only limited to specified training datasets. Besides,
the research of full scene fused from multiple views and
dynamic growth scene structures built from SLAM are more
valuable than a single image [8], [9], [10], [11]. Semantic
maps are built from dense 3D maps to help robot understand
environments [12], [13]. Supervised 3D semantic segmentation
using joint segmentation and recognition [7], [14], [15], [16]
like Conditional Random Fields (CRF) [17] is employed to
capture scene features and complex relationships between
different labels of 3D elements. The demerit of those modern
semantic methods is that users have to train large 3D ground
truth datasets to get the classification model. Unfortunately,
manually annotating 3D data requires more human efforts than
that of 2D images. Moreover, the process of training is usually
time-consuming and resource-consuming, which is unsuitable
for real-time robot exploration and navigation system.

Geometric-based methods are classified into five varieties:
(1) edge-based segmentation [12] method has the least con-
sumption of time but poorest performance of accuracy against
noise. (2) normal-based segmentation method [18] is more
reliable while time-consuming. (3) RANSAC is designed to
find clusters that well fit a plane model without considering
the connectivity of points, which produces false detections
in many situations along with computationally expensive. (4)
Region-growing method [19] has been proposed to exploit the
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Fig. 1: Pipeline of RTTR ground plane segmentation.

neighborhood information in dense depth images, which is in-
valid in sparse point clouds for points without connectivity. (5)
The Hough transform [20] is an alternative method to estimate
model parameters from a set of measurements. The Hough
transform and efficient RANSAC are combined in [21] to
solve multi-resolution plane segmentation of 3D point clouds
by splitting each cluster into a set of connect components, and
the authors apply RANSAC to determine a fittest plane and to
reject outliers robustly in each connect components in multi-
resolution. However, it is extremely expensive computation to
extract surface elements on multiple resolutions. RANSAC is
used in [22] to fit and remove planes and other shapes such
as spheres, cones from the point clouds. The drawback of this
approach is that the plane is non-deterministic and sensitive
to the initialization of model coefficients, meanwhile, the
approach focuses on still environments. Our fitting algorithm
is robust to provide the candidates generated by DSO for better
planar segmentation by excluding the influence of the desk and
walls point clouds. And it is compatible for dynamic growth
environment. Some works [6], [23], [21] fit the plane using the
depth information of indoor scenes to rebuild the construction
of environment. Pham et al.[24] propose an unsupervised
geometric-based approach to separate 3D point clouds into
plane and other meaningful scene structures by guaranteeing
geometric consistencies, for instance, walls are orthogonal
to the floor. The geometric consistencies result in failing to
extract ground planes individually in outdoor environments.

Above methods have their merits and demerits to be applied
in plane segmentation. In order to meet the requirement of
autonomous navigation and exploration task in an unknown
environment, the ground plane segmentation algorithm needs
to be operated in real-time without training. Therefore, a Real-
Time Trust Region (RTTR) RANSAC-based plane segmenta-
tion method is proposed in this paper.

Our proposed method aims to conquer the problems brought
by sparse point clouds and outperforms the random sample
consensus (RANSAC) [25] method in real-time. Fig.1 is
the pipeline of RTTR ground plane segmentation. The main

contribution of this paper lies in proposing Real-Time Trust
Region (RTTR) for ground plane fitting. Firstly, we utilize
Radius Outlier Removal algorithm [26] to remove isolated
noisy points in the point clouds generated by direct sparse
odometry (DSO) [27]. Secondly, candidate points of trust
region are utilized to fit the ground plane using RANSAC [25].
Finally, the outliers are excluded and the omitted points are
appended for better segmentation in the subsequent iteration.
Even though RANSAC has been used for many applications,
especially for plane segmentation, to the best of our knowl-
edge, we appear to be at the forefront to use sparse point
clouds to achieve ground plane segmentation by RANSAC.
Our approach is evaluated on the TUM monoVO dataset [28]
which contains complex indoor and outdoor mixed scenes.
The evaluated results show consistency by achieving good
performance while achieving considerable speedups.

II. RTTR GROUND PLANE SEGMENTATION

We propose the Real-Time Trust Region (RTTR) ground
plane segmentation for monocular mobile robot navigation
system. Outdoor scene seq_25 of dataset are chosen as an
example of our method in Fig.2. The sparse point clouds
of RTTR depend on DSO [27] which is the state-of-the-art
monocular visual odometry based on direct method. DSO
realizes localization by minimizing the intensity differences
between consecutive images and utilizes method proposed in
[29] to refine the depth of each point. It is memory-saving to
reconstruct a large scale environment with sparse spatial points
but sensitive to illumination change and trouble in dealing with
outliers. For instance, Fig.2(a) related to Fig.2(b) have more
noise in points clouds. Therefore we filter out the outliers of
the sparse point clouds in next section.

A. Radius outlier removal

The point clouds generated by DSO still have many noisy
points as shown in Fig.2.(a) and Fig.2.(b). In our proposed
method, depth of point cloud is calculated by triangulation
by visual odometry while the scale of ground truth cannot be
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Fig. 2: Examples of RTTR ground plane segmentation method.
The points colored in gray, green, yellow and blue represent
the original point clouds, obstacle points, candidate plane
points and fit plane points, respectively. Red line is the
trajectory of camera and the red square is the pose of current
camera, and the blue line is the constraint of current frame.
For seq_25, (a), (b) and (c) represent the original point cloud
before filtering, the point cloud after filtering and the overall
effect of our method with two zoomed in parts, respectively.
(Best viewed in color)

obtained. Most of those noisy points are caused by error depth
estimation, normally, and those points are isolated from the
construction point cloud. The region where the point cloud is
more dense represents richer information. Our method utilizes
Radius Outlier Removal to remove noisy points far away from
the point clusters. Fig.3 illustrates that specified number of
neighbors in the region of the circle constructed by the center
with a specified radius remain in the point cloud, otherwise, the
center point is excluded from the point clouds. The parameters
of radius and threshold of neighbors are given in section four.

B. Trust region

Once the outliers have been removed from sparse point
clouds, the ground plane is identified from the remaining point
clouds. As several plane fitting methods have been mentioned
before, we aim to use RANSAC to fit the ground plane for its
robustness without computationally expensive training.

However, RANSAC is non-deterministic and sensitive to the
structure of environment, which results in failing to extract the
ground plane in the long narrow corridor for considering the
wall as ground plane shown in seq_11 of Fig.7. So the quality
points should be provided for plane segmentation. Trust region
of ground plane points is proposed to solve this problem.

1) Candidate points: By intuition we know that points
at the bottom of coordinate system are more likely to be a
ground plane in the case of known robot pose. However, the
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Fig. 3: Schematic diagram of Radius Outlier Removal. The red
points are the searching points and the blue points represent
the neighborhood points, while the black circle is the searching
radius with radius of r. (Best viewed in color)

establishment of the coordinate is related to the initial direction
of movement of the robot. For instance, once the robots pitch
or roll, the points in the lowest region may not still be the real
ground plane points. Fig.4 indicates that robot pitching leads
to the change of the distribution of points in the coordinate
system. When robot initial translation is along to X-axis with
pitching, the lowest region points are close to ground plane like
Fig.4(a). We assume p is a vector contains all points generated
in current pose. z; is the height value of a point p; and is stored
in a vector H. The vector H is used to obtain threshold of
H,;p.e based on initial lowest region as in Eq.(1):

chre = Hmzn + (Hmaz - Hmzn)/ta (1)

where ¢ is a parameter used to divide the vector H into equal
parts. If the z; meets the requirement of Eq.(2), points p; will
be considered as the initial lowest region points:

0< 2; < chre~ (2)

2) Sliding windows: Normally, the initialization of robot
is accompanied with a slightly shaking, which leads to the
situation like Fig.4(b). Mobile robots can not see the ground
due to the camera is being blocked or perspective change.
Both above reasons cause that some ground plane points are
no longer in the scope. Even worse, some structure points or
obstacles are appended. The mixed of true and false ground
points gradually increase as the robot moves. Hence, we follow
the approach by Leutenegger [30] with maintain points instead
of keyframes by sliding window. Fig. 5 illustrates how the
sliding window works in our paper. In Fig.5(a), specified size
of sliding window makes pose 9 perceive the points which
are insight of pose 7 but out of sight current pose. Points at
the bottom of the bounded sliding window are trust region
of interest which are considered as candidate plane points
to fit a robust ground plane. At the same time the sliding
window determines the degree of our method depending on
the previous point clouds. The bigger size of sliding window
is, the more we depend on the previous points. As Fig.5 shown,
the size of sliding window is set larger when the robots are
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Fig. 4: Schematic diagram of the situation that initial coor-
dinate system is pitched or rolled, red points means the true
ground plane points while the blue points means the other
points of sparse point cloud.(b) is the situation of coordination
rotation of (a). (Best viewed in color)

in the narrow room filled with objects which will block the
sight of camera. In contrast, smaller size of sliding windows
will be set in a scene without so many obstacles.

C. Plane segmentation

Initial candidate points of the trust region are extracted from
the sliding windows, even though a small amount of outliers in
the candidate points. It is enough for RANSAC to calculate the
first coefficient of plane model. Meanwhile, it is more efficient
for limited size of candidate points in sliding windows related
to all points. Assuming (1,2, 2;) is the 3D-dimensional
coordinate of a point p;, vector x; contains [z;1, %2, 1]7,
and the plane model coefficient w is [wy, wo,w3]T. Thus the
ground plane fitting problem is computed by Eq.(3):

N
min Z(WTXi — )2, 3)
i=1

where NNV is the number of all candidate points. Taking all the
initial candidate points in sliding window into account, X is a
vector that contains all X-axis and Y-axis values of all initial
candidate points, and Z is the vector made up of Z-axis values
of all initial candidate points, so the first model coefficient can
be obtained as follows:

w=(XTX)" X7z 4)

Once the first plane model coefficient is estimated from the
Eq.(4), the model will be used to exclude the outliers of the
candidate points and obstacle points. In this paper, the value of
€ is the allowable deviation of fitted ground plane. The initial
value of ¢ is equal to Hyp,. in Eq.(1). Excluding outliers can
be described as:
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Fig. 5: Schematic diagram of the sliding window. (a) is top
view of the indoor scene and the (b) is top view of the outdoor
scene. The blue solid line (pose 9) rectangle is the current pose
and blue dash line rectangles are previous pose of camera.
The dash line triangle is the visual filed of the camera. The
structure point cloud in the sliding windows present yellow
color circles. (Best viewed in color)

Then the subsequent candidate points within the sliding win-
dow are calculated by first plane model coefficient. At the
same time, the processing of plane fitting carries on the quality
points in the previous fitted plane. Then allowable deviation ¢
will update as follow equation:

€ =0+ (1 - a)HGoodthre Zf HGoodthre < chrm (6)

where « is the stability coefficient which determines the
ratio of original €. Hgoodthre 18 range of quality points in
the previous fitted plane. This equation is available when
Hgoodthre is smaller than Hyp,e in EQ.(1). Hgoodthre becomes
smaller after successful plane fitting which results in smaller
value of € and a more stringent plane fit condition. In this
paper, we set the minimum limit of allowable deviation ¢ as
a half of the Hyj,. for convenience.

D. Obstacle detection

Related work in obstacle detection system for monocular
vision real-time navigation is few for sparse density of point
clouds and huge computation. This paper continues to use the
sliding windows to achieve a local obstacle detection system,
meanwhile, octree [31] is used to improve the searching
speed of obstacle detecting. The octree is a hierarchical data
structure for spatial subdivision in 3D that used to reduce the
memory usage of point cloud. Taking the camera position
as the searching center, our method measure the distance
from the searching center to points in the size of searching



TABLE I: The time usage of our method with different size of sliding windows(density = 19) .

scene seq the time usage with different size of sliding windows (ms)
1000 [ 2000 [ 3000 [ 4000 [ 5000 [ 6000 [ 7000 | 8000 [ 9000 [ 10000
seq_01 | 0.025 | 0.099 | 0.135 | 0.256 | 0.324 | 0.394 | 0.435 | 0.509 | 0.579 | 0.645
seq_11 | 0.029 | 0.104 | 0.148 | 0.193 | 0.225 | 0.273 | 0.301 | 0.362 | 0.418 | 0.432
Indoor seq_28 | 0.042 | 0.077 | 0.105 | 0.165 | 0.208 | 0.242 | 0.273 | 0.302 | 0.339 | 0.366
seq_38 | 0.026 | 0.076 | 0.138 | 0.191 | 0.214 | 0.272 | 0.323 | 0.362 | 0.396 | 0.440
seq_41 0.035 | 0.056 | 0.114 | 0.127 | 0.181 0.225 | 0.250 | 0.254 | 0.276 0.311
seq_20 | 0.101 0.187 | 0.278 | 0.317 | 0.405 | 0.447 | 0.520 | 0.665 | 0.702 0.869
seq_21 | 0.004 | 0.067 | 0.154 | 0.198 | 0.233 | 0.304 | 0.339 | 0.392 | 0.429 | 0.538
Outdoor | seq_31 | 0.021 | 0.083 | 0.135 | 0.195 | 0.256 | 0.303 | 0.327 | 0.381 | 0.423 | 0.463
seq_48 | 0.006 | 0.032 | 0.061 | 0.076 | 0.095 | 0.106 | 0.140 | 0.150 | 0.196 | 0.207
seq_50 | 0.009 | 0.041 | 0.087 | 0.111 | 0.142 | 0.174 | 0.209 | 0.236 | 0.266 | 0.303
Both seq_44 | 0.014 | 0.046 | 0.109 | 0.135 | 0.176 | 0.213 | 0.243 | 0.281 | 0.342 | 0.344

sliding windows. those points whose distance are shorter than
safe distance will be considered as obstacle points. In the
searching procedure, consuming a single octree data structure
including n nodes with a tree depth of d, the complexity
can be performed as O(d) = O(logsn) O(logn). This
optimization of searching method is effective for real-time
system.

III. EXPERIMENTS

It is undeniable that classifier-based method get a good
effect by training a lot of scene in the prior. However, the
excellent performance of those methods are limited in the
dataset similar environment. So we focus on the unsupervised
methods and compare our method directly against geometric-
based methods. Following the work in the paper [24], we
compare our method with standard RANSAC method. In this
paper, Pham et al. have mentioned that currently there is no
proper 3D benchmarking available, thus quantitative evalua-
tion of our method is difficult. One has to fall back on con-
ventional 2D method for the issue of 3D maps segmentation.
Meanwhile, work of [32] also mentioned that currently there
were no evaluation methods for 3D data available because
some problems arise when benchmarking 3D point cloud
segmentation. Pham et al. chose the NYUv2 dataset which is
proposed in the work of [33] published by Nathan Silberman.
As the author demonstrates in the paper, this dataset only
has indoors scenes and leads to better object segmentation.
The road part of KITTI benchmark [34] contains discrete
images which are unable to reconstruct environments. In order
to prove that our approach can segment ground plane in the
both indoor scenes and outdoor scenes, we provide qualitative
comparison on the TUM monoVO dataset [28]. This dataset
contains 50 photometrically calibrated sequences, comprising
105 minutes of video recorded in dozens of different indoor
and outdoor environments. It is recorded by handing evaluate
so that it contains small slight shake and coordination rotation
which can demonstrate adaptability and robustness of our
method. Eleven sequences, which contain five indoor scenes,
five outdoor scenes and one mixed scene, are chosen to verify
our method in the following four aspects: the high-efficiency to
different size of sliding windows, the high-efficiency to density
of sparse point cloud, robustness to density and robustness

TABLE II: The time usage of our method with different
density (size of sliding windows = 1000).

scene seq the time usage with Density (ms)
1 5 10 15 19
seq_01 | 4.680 | 0.904 | 0.223 | 0.052 | 0.025
seq_11 | 5.247 | 0.976 | 0.337 | 0.095 | 0.029
Indoor | seq_28 | 4.701 | 0.846 | 0.135 | 0.107 | 0.042
seq_38 | 4.452 | 0.694 | 0.105 | 0.059 | 0.026
seq_41 | 4.199 | 0.868 | 0.183 | 0.038 | 0.035
seq_20 | 4.904 | 1.023 | 0.355 | 0.137 | 0.101
seq_21 | 4.420 | 0.758 | 0.079 | 0.017 | 0.004
Outdoor | seq_31 | 4.614 | 0.865 | 0.155 | 0.036 | 0.021
seq_48 | 3.686 | 0.515 | 0.056 | 0.013 | 0.006
seq_50 | 3.757 | 0.566 | 0.050 | 0.017 | 0.009
Both seq_44 | 3.999 | 0.591 | 0.094 | 0.025 | 0.014

to different scenes. In our experiment, we set the radius as
0.2cm, and the number of neighbors equals to 5 for taking into
account the density of point cloud and the effect of filtering.
All experiments run 5 times and the average are accounted.

The high-efficiency to different size of sliding windows.
As shown in Table I, computing time (obtained on an Intel
i7 quad core @ 3.6GHz with 16Gb memory) of our method
is less than 1ms each frame with the size of sliding windows
increasing from 1000 to 10000. In this experiment the density
is set to 19 which means point cloud is the most sparse. It is
acceptable time usage for DSO which is less than 33ms per
frame.

The high-efficiency to density of sparse point cloud. Table
II sets the size of sliding window to 1000. The density becomes
smaller as the number is from 1 to 19. Our method takes less
than 1ms when the value of density larger than 5, which meets
our expectations in real-time.

Superior performance in the case of different densities and
different sliding windows makes our method achieve high-
efficiency against the change of density and size of sliding
window in both indoor scenes and outdoor scenes.

Robustness to density Robust performance to density in
ground plane segmentation is shown in Fig.6. The points
colored in gray, green, yellow and blue represent the original
point clouds, obstacle points, candidate plane points and fit
plane points, respectively. Almost all fitted ground plane points
(blue) distribute at the bottom of scene viewed by side view
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Fig. 6: Example of the performances of our method with different densities. (a), (b) and (c) represent both stereogram and
side view of the same scene of seq_01 in the case of the density value is equal to 19, 10 and 1 respectively. (d), (e) and (f)
represent both stereogram and side view of the same scene of seq_25 in the case of the density value is equal to 19, 10 and

1 respectively.(best viewed in zoomed mode)

in both indoor scenes and outdoor scenes. The candidate
plane points (yellow) is sparse and only a small part of them
distribute on the ground plane for the initialization rotation of
coordination.

Robustness to different scenes. Comparison of experi-
mental performance of traditional RANSAC method with our
method in five sequences are shown in the Fig.7. For seq_20
contains upstairs which causes the huge change on the height
of camera pose, the RANSAC method can only segment
the plane which contains the maximum number of points,
while our method split a number of ground plane benefited
from the sliding window. The RANSAC method has a wrong
segmentation by splitting the wall in seq_11. Correct division
in those sequences using our method for the robustness of trust
region.

IV. CONCLUSION

This paper presents a novel approach, namely the Real-
time Trust Region ground plane segmentation, for dealing
with the difficulties of segmentation in dynamic unknown
environment and the rotation of initialization coordination.
Experiments show more robustness and high-efficiency than
the RANSAC method due to RTTR providing quality inliers
for ground plane segmentation. At the same time, RTTR shows
considerable speed-ups in computational times since limited

candidate points by sliding windows are used to fit the ground
plane. The excellent performance of our method are shown
on the both indoor and outdoor scenes of the TUM monoVo
dataset. A continuation to this study could be using our method
on real mobile robots to achieve autonomous navigation with
a single camera. It would also be interesting to segment more
objects and recognize the split objects in real-time.
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