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Abstract—Lipreading is an important component of audio-
visual speech recognition. However, lips are usually modeled as a
whole in lipreading, which ignores that each part of lip focuses on
different characteristics of mouth and the overall model can not
fit each part perfectly. Besides, features based on the whole lip
usually vary a lot according to different speakers, which leads that
the training databases usually need to contain as much speakers as
possible. In this paper, A part-based lipreading (PBL) method is
proposed to deal with the mismatch between an overall lip model
and the separate parts of lips, also the excessive dependence of
models on the speakers in training set. PBL models lips partly
and predicts jointly. It employs a uniform partition strategy on
convolutional features and generates several part-level sub-results
for final prediction. Experiments are performed on a large publicly
available dataset (LRW) and part of it (p-LRW, 65 words), in
order to simulate the progressive instructions in the working
scene of robots. Word accuracy of PBL reaches 82.8% on LRW
and 88.9% on p-LRW. Finally, an end-to-end audio-visual speech
recognition system using PBL is established and achieves 98.3%
word accuracy on LRW.

Index Terms—Service robots, audio-visual speech recognition,
part-based lipreading

I. INTRODUCTION

Audio-visual speech recognition is important for the human-
computer interaction system, especially the service robots. It
is the task of recognizing words in a video based on both
audio and visual signals. The introduction of visual information
can help the robots localize the speakers and understand the
instructions better, which are conducive to the friendliness and
effectiveness of the human-computer interaction system.

Many methods have been proposed for audio-visual speech
recognition. For traditional methods, features are first extracted
around the mouth region of interest (ROI) and audio waveform,
and then concatenated to be matched to a normal template [1],
[2]. In recent years, with the development of deep learning tech-
nology, audio-visual speech recognition has received extensive
attention from researchers. Koller et al. [3] and Noda et al.
[4] trained an image classifier CNN to discriminate visemes.
For word recognition, in order to make full use of the deep
convolutional layers to explore more highly abstract features,
the deep bottleneck features (DBF) is used by Tamura et al.
[5] for feature encoding. Similarity, Petridis and Pantic [6] also
applied DBF on the image of every frame. Then, considering
that lipreading needs both temporal and spatial information,
Tran et al. [7] used 3D convolutional filters to process the

image. By consulting methods in other fields, Chung et al.
[8] applied an attention mechanism to both the mouth ROIs
and MFCCs. In order to build a thorough end-to-end network,
Petridis et al. [9] used LSTMs to extract features from the raw
data. However, these methods usually take the lip as a whole,
which ignores the independent functions of separate lip parts.

In this paper, PBL is proposed based on the phenomenon
that different parts of lips may focus on different mouth
characteristics during the recognition (smiles are judged mostly
by the corners of lips). It shows that the judgement of a
specific feature may not use the whole lip but only part of
it. Some facts also show that not every point of the lip will be
deformed during the pronunciation. For instance, the phoneme
’/ı/’ and ’/i:/’ are similar in central part of lips but distinct in
corner, while the distinguishment of phoneme ’/@/’ and ’/A/’
is opposite. In order to focus on the deformation part of the
lip and reduce the interaction between mouth characteristics,
PBL models lips partly. It takes a whole lip image as the
input and cuts every convolutional feature into several parts,
then models each part with independent parameters. Finally, it
combines the results from every part to predict. The thought
of PBL is concise: the network architectures of each part keep
consistent, with modifications just on the parameters of models.
Based on that specific characteristics usually emerge on a
certain part of the lip, PBL uses part-level models to avoid the
over-fitting from using an overall model. Meanwhile, part-level
models have smaller receptive fields so that they have lower
sensitivity of changing lips, which means the model focuses on
not which speaker the lip from but the intrinsic features it has.
So PBL decreases the dependence of models on speakers in the
training set. Moreover, PBL obtains fine-grained information
and fits lips better by using multi-level parameters (different
parts with different parameters). Besides, PBL analyzes mouth
characteristics respectively and concludes jointly, which avoids
the mutual influence between characteristics and ensures the
integrity of information.

This paper extends the end-to-end audio-visual speech recog-
nition network in [10] with PBL. Experiments are divided into
two parts. One is video-only recognition (PBL) and the other is
audio-visual recognition. For PBL, experiments are performed
on the whole LRW database and part of it (p-LRW, some words
in LRW are selected to be a new small database), to simulate
the progressive instructions in industrial applications. PBL is
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Fig. 1: Examples of lips. Each row shows one person’s lips for
four phonetic symbols.

0.8% higher over the whole database and 2.1% higher over the
p-LRW than the baseline. For the audio-visual recognition, a
0.3% absolute promotion is accomplished over the whole LRW.
The contributions of our paper are as following: 1) PBL builds
models based on part-level features, which are more robust on
lips from various speakers, 2) PBL fits lips in multiple levels
and obtains more fine-grained information, 3) PBL is proved
to be effective in both robot applications and academic tasks
using lipreading.

II. PROPOSED METHOD AND SYSTEM FRAMEWORK

A. Part-Based Lipreading

PBL aims to learn from separate lip parts to enhance the
system robustness and optimize the fitting degree of models. It
originates from a common sense: similar pronunciations lead
to similar lip shapes. Closer observation shows that similar
lip shapes may only differ obviously in parts, as shown in
Fig. 1. There are two situations when we try to distinguish
two similar pronunciations of the same speaker. In Group-1,
different characteristics are mainly in the middle of lip, like
the longitudinal open-close degree of mouth, teeth and radian
of the lower lip. While in Group-2, differences are mainly
from the corner part, such as the transversal open-close degree
and the angle of mouth corner. For further investigations, lips
under uniform partition are introduced as in Fig. 2. In Group-1,
differences in the center part are more obvious than the right
and left corner, the former shows more variety in mouth height,
teeth and radian. Group-2 is opposite, angle of the mouth corner
is distinct among comparison, and it only relates to the right
and left corner of mouth. Above all, PBL learns from each part
independently, in order to extract more part-level lip variety
as possible. In other words, changes of some characteristics
occur only in one part of lip (teeth, mouth height and lip
radian in middle part, mouth angle and transversal mouth
length in corner part), so modeling all kinds of variety with an
overall framework may not perfectly fit each one. PBL aims
to solve this problem by processing each part with different
framework parameters. Besides, according the experience from
other fields, part-level features are more robust on various
objects. In lipreading, part-level lip features may fit the various
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Fig. 2: Uniform divided lips. Each figure from Fig. 1 is divided
into three parts: right corner, left corner and center considering
the symmetrical structure of lips. Frame colors are consistent
with the corresponding phonetic symbols. In each group, for
each speaker, the same part from different pronunciations
(different colors) are put together for comparison.

lips well and decrease the dependence of models on speakers
in the training set.

Inspired by the part-based method in person re-identification
field [11], a PBL network is introduced to lipreading as shown
in Fig. 3. First the lip sequences are sent into a front-end spatio-
temporal convolutional unit, which consists of a 3D convo-
lutional layer, a BN layer, a ReLU layer and a MaxPooling
layer. There are 64 kernels in the 3D convolutional layer, each
has 5 by 7 by 7 size. Next the outputs are sent into a 34-
layer ResNet [12] for feature extraction. Then, each feature
map is divided into three parts according to the real space
relationship they have. For each part, two 512-cell Bidirectional
Gated Recurrent Unit (BGRU) layer and a SoftMax layer are
added to independently model their temporal varieties. After
that, there are three intermediate predictions corresponding
with three losses. We summed them up as the final loss for
the ultimate prediction as follows:

loss = −
N∑

n=1

D∑
d=1

[yd
D

log(pnd ) +
1− yd
D

log(1− pnd )
]
, (1)

where D stands for the output dimension (just the number of
total classes), and d is the index of D. N is the number of lip
parts, and n is the index of N. pnd is the prediction result on
dth frame from the nth part-level network. yd expresses right
label the dth frame should be.

The spatio-temporal convolutional unit is proven to be skilled
in extracting the short-term dynamics of the mouth region even
when there are recurrent networks deployed after [13]. In this
paper, considering that ResNet is prepared for static colored
images from ImageNet or CIFAR, the 34-layer ResNet in PBL
is trained from zero without any pre-trained models. Moreover,
the same weights are allocated to three parts during the loss
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Fig. 3: Structure of PBL and the baseline. Lower left shows the data augmentation talked in III-A. Visual stream of [10] is
taken as the baseline, which takes the lip feature map as a whole.

summation, because of the uncertainty when the middle part
is significant, and when the corner parts are more important
during lipreading.

B. Audio-Visual Recognition Framework
A brief framework of the end-to-end audio-visual speech

recognition system is shown in Fig. 4, which is based on [10].
The “BGRU-V” unit contains two 1024-cell BGRU layers in
baseline and six 512-cell BGRU layers in PBL. Details about
the video stream are in Section II-A. In the following, we will
first describe the audio stream and then the audio-visual fusion
stream.

Audio stream is built with an 18-layer ResNet followed by
two BGRU layers as in [10]. The raw audio signals are first fed
into a front-end temporal convolutional unit. It mainly contains
an 1D convolutional layer. Outputs of the unit are adjusted
into 29 windows in order to keep up with the video frame
rate. Then they are fed into the ResNet to extract much deeper
features. Finally, the high-level features are fed into two 1024-
cell BGRU layers to model the long term temporal information.

For audio-visual fusion, the outputs of two modalities are
one-to-one concatenated and then fed into two 1024-cell BGRU
layers. Ultimately, a SoftMax layer with 500 cells is used for
classification, which is formulated by

si =
epi∑n
i=1 e

pi
, (2)

where i is the index of output dimension, i ∈ [1, 500]. pi is the
initial prediction result, and si is the normalized prediction
result. The final result is decided by the highest average
probability.

III. EXPERIMENTS SETTINGS AND RESULTS
A. Database and Preprocessing

The Lip Reading in the Wild (LRW) database [14] is the
largest publicly available English-based word-level lipreading

dataset. It contains around 500000 video slices from BBC
TV programs. Each slice has fixed resolution and the same
length (1.16 seconds), which offers much convenience to the
community. Moreover, there are more than 1000 speakers and
500 classes of words, much larger than other earlier word-level
lipreading databases [15]–[17].

Videos of each class have been divided into three parts:
training, validation and test sets. There are less than 1000 and
more than 800 samples in training set, where some classes have
more samples than others, and 50 samples in both validation set
and test set. Moreover, in order to strengthen the robustness to
noise, several levels of babble noise (SNR from -5dB to 20dB)
from the NOISEX database [18] are added under uniform
distribution during training.

In order to establish a single-variable comparative experi-
ment, we frame out the mouth ROI in fixed size of 96 by 96
pixels as in [10]. Then the frames are changed into grayscale
and finally normalized using unified mean and variance. During
training, random cropping and horizontal flipping with proba-
bility 50% are performed for data augmentation.

Given that signals from various natural environments have
different levels of loudness, each audio slice is normalized with
mean zero and standard deviation one.

B. Implementation Details

The Adam training algorithm [19] is used by both the entire
audio-visual network and the single streams. The size of mini-
batch is 16 and the initial learning rate is set to 0.0003. Batch-
Norm is added after all convolutional and linear layers if they
are not the preceding one of the SoftMax layer. The cross
entropy loss is used per time step during training.

The whole training stage starts with the independent training
of visual and audio stream, then the audio-visual network is
trained end-to-end. According to [10] and [20], the training
phase of the two streams are divided into 3 steps: first, a
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Fig. 4: Framework of the end-to-end audio-visual speech recog-
nition system.

temporal convolutional backend is added after the ResNet to
form a classification network. Then it is trained until working to
its best. Second, the convolutional backend is detached and the
BGRU layers are attached. Then the network is fine-tuned for
5 epochs with fixed parameters of the front-end convolutional
unit and the ResNet. Last, the network is trained end-to-end.
For the audio-visual training, there are two steps: first, BGRU
layers are fine-tuned for 5 epochs keeping the parameters fixed
in two single streams. Second, the whole network is trained
end-to-end.

More specifically, the temporal convolutional backend men-
tioned before consists of two units. The first unit mainly
contains two temporal convolutional layers and a MaxPooling
layer. The second unit mainly contains a linear and a SoftMax
layer.

C. Results

Video-only results: The same network is experimented twice
on two databases, in order to verify if PBL works well with
the progressive instructions, which can be formulated by

outputi = f(inputi|databasei), (3)

where i is the index of processes. outputi is the recognition
result of the inputi based on databasei. f(·) is the speech
recognition system. Inputs here are a series of words. While
i = 1, the first instruction input1 has no prior knowledge,
so the system works on the whole dataset database1. Then
the database is limited to a smaller scale database2, according
to the latest recognition result output1. And the second input

mall

store

system systemsystem

fruit

store

apple

fruit

store fruit apple

Input word/
output prediction

speech 
recognition 
system

database

Fig. 5: Progressive instructions for shopping guide robot. After
the recognition of word “mall”, the database can be reduced
into subset “store” from the initial “mall”, the recognition
of word “fruit” is performed on “store” database, and the
recognition of word “apple” is performed on “fruit” database.

Table 1: Two databases for experiments. p-LRW is combined
by part of words from LRW.

Database # of Classes Instructions

LRW 500 various, copious

p-LRW 65 few species, small quantity

input2 are recognized based on database2. A regular is that
following databases are updated by their previous outputs.

An example of progressive instructions is shown in Fig. 5.
Our experiments simulate a simple scene of progressive in-
structions: the length of input sequence is set to 2. So that
two databases are needed, one is the initial whole database
and the other is a smaller subset. Details of the databases are
shown in Table 1. We perform PBL and the baseline models
on them. During experiments, we train models only on the
whole LRW and test them on both LRW and p-LRW. Like most
researches on lipreading, we train and test models on the LRW
dataset to verify the effectiveness of PBL academically. Apart
from that, the ability of practical application is also important.
So the p-LRW is introduced for another test. It is based on
the progressive instructions in actural case, where models are
trained once on the initial database and are not allowed to be
retrained when the database update.

Results are shown in Table 2. A slightly improvement
of 0.8% is shown when we test on the LRW database. A
conclusion can be obtained that PBL works better than the
traditional method in baseline, which takes the lip as a whole.
Meanwhile, an obvious superiority of 2.1% on p-LRW database
is achieved. We can see that the superiority of PBL becomes
more significant with the shrinking database. It certificates
that PBL owns the ability to keep efficient with a changing
database, thus it has a wide industrial application prospect.
Because actural cases own larger lip variety than laboratory
cases and PBL provides more system robustness, so it performs
better than the baseline especially in actual cases. Besides, PBL
works well when the database changes from LRW to p-LRW,
which provides the possibility for system transformation from
complicated and universal scenes to simple and specific scenes
without changing the structure of models and re-training. It
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Table 2: Word accuracy (WA) for the baseline and PBL video-
only stream on LRW and p-LRW. [20] is a similar end-to-end
model.

Visual WA

Stream LRW p-LRW

baseline 82.0% 86.8%

ours 82.8% 88.9%

[20] 83.0% ——

Table 3: Word accuracy (WA) for the baseline and PBL based
audio-visual network in the noise-free environment.

Network AR(LRW)

baseline A-V 98.0%

PBL A-V 98.3%

further proves that part-level models can fit different data fields
well. In addition, PBL is slightly lower than 83.0%, because a
facial landmark regression algorithm [21] is used in [20]. But
in this work, PBL just crops the mouth ROI by the centre of
image as in baseline.

Moreover, we measure the computational cost of models by
the processing FLOPs and model parameters. For an 88×88
input image, the FLOPs of the baseline [10] and PBL are 3.23G
and 3.22G seperately. In addition, the model parameters of the
baseline and PBL are 29.03M and 27.59M. The PBL achieves
better performance with a lightweight model.

Audio-visual fusion system results: Results for the whole
audio-visual fusion network are shown in Table 3, system using
PBL brings 0.3% superior than the baseline. Although slight,
the leading seems momentous especially when the baseline has
received an accuracy up to 98%. A conclusion can be drawn
from the result that PBL is effective whether it works separately
or as a component of other tasks. The part-level features and
models of lips have stable superiority in various tasks.

IV. CONCLUSIONS

We propose a PBL method and establish an end-to-end
audio-visual fusion system using PBL. PBL is based on the
phenomenon that different parts of the lip focus on different
kinds of characteristics. It employs uniform partition strategy
on lip feature maps and assembles part-informed classification
results together. PBL enhances the system robustness on lips
and fitting degree of models. Experiments on LRW and p-
LRW (a database for the progressive instructions in the working
scene of robots) show that PBL works better academically
and practically with a lightweight framework. The end-to-end
audio-visual system using PBL also outperforms the baseline
model, which shows the stable superiority of part-level features
and models.

ACKONWLEDGMENT

This work is supported by National Natural Science
Foundation of China (No. 61673030, U1613209),

National Natural Science Foundation of Shenzhen (No.
JCYJ20190808182209321).

REFERENCES

[1] S. Dupont and J. Luettin. “Audio-visual speech modeling for continuous
speech recognition,” IEEE Transactions on Multimedia, vol. 2, no. 3, pp.
141–151, 2000.

[2] G. Potamianos, C. Neti, G. Gravier, A. Garg, and A. W. Senior, “Recent
advances in the automatic recognition of audiovisual speech,” Proceed-
ings of the IEEE, vol. 91, no. 9, pp. 1306–1326, 2003.

[3] O. Koller, H. Ney, R. Bowden. “Deep learning of mouth shapes for
sign language,” IEEE International Conference on Computer Vision
Workshops. 2015, pp. 85–91.

[4] K. Noda, Y. Yamaguchi, K. Nakadai, H. G. Okuno, T. Ogata. “Lipread-
ing using convolutional neural network,” INTERAPEECH, 2014, pp.
1149–1153.

[5] S. Tamura, H. Ninomiya, N. Kitaoka, S. Osuga, Y. Iribe, K. Takeda,
S.Hayamizu. “Audio-visual speech recognition using deep bottleneck fea-
tures and high-performance lipreading,” Asia-Pacific Signal and Informa-
tion Processing Association Annual Summit and Conference (APSIPA),
2015, pp. 575–582.

[6] S. Petridis, M. Pantic. “Deep complementary bottleneck features for vi-
sual speech recognition,” International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2016, pp. 2304–2308.

[7] D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri “Learning
spatiotemporal features with 3d convolutional networks,” The IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 4489-
4497.

[8] J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman, “Lip reading
sentences in the wild,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 3444-3450.

[9] S. Petridis, Y. Wang, Z. Li, and M. Pantic, “End-to-end audiovisual fusion
with LSTMs,” arXiv preprint arXiv:1709.04343, 2017.

[10] S. Petridis, T. Stafylakis, P. Ma, F. Cai, G. Tzimiropoulos, M. Pantic.
“End-to-End Audiovisual Speech Recognition,” International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 6548-
6552.

[11] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang. “Beyond part models:
person retrieval with refined part pooling (and a strong convolutional
baseline),” European Conference on Computer Vision (ECCV), 2018, pp.
480-496.

[12] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for
image recognition, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[13] Y. M. Assael, B. Shillingford, S. Whiteson, and N. de Freitas. “Lipnet:
Sentence-level lipreading,” arXiv preprint arXiv:1611.01599, 2016.

[14] J. S. Chung and A. Zisserman. “Lip reading in the wild,” Asian Confer-
ence on Computer Vision (ACCV), 2016, pp. 87–103.

[15] M. Cooke, J. Barker, S. Cunningham, and X. Shao. “An audio-visual
corpus for speech perception and automatic speech recognition,” The
Journal of the Acoustical Society of America, vol. 120, no. 5, pp.
2421–2424, 2006.

[16] I. Anina, Z. Zhou, G. Zhao, and M. Pietik¨ainen. “Ouluvs2: A multi-
view audiovisual database for nonrigid mouth motion analysis,” IEEE
International Conference and Workshops on Automatic Face and Gesture
Recognition (FG), 2015, pp. 1–5.

[17] E. Patterson, S. Gurbuz, Z. Tufekci, and J. Gowdy. “Moving-talker,
speaker-independent feature study, and baseline results using the CUAVE
multimodal speech corpus,” EURASIP Journal on Advances in Signal
Processing, vol. 208541, no. 2002, pp. 1189–1201, 2002.

[18] A. Varga and H. Steeneken. “Assessment for automatic speech recogni-
tion: II. NOISEX-92: A database and an experiment to study the effect of
additive noise on speech recognition systems,” Speech Communication,
vol. 12, no. 3, pp. 247–251, 1993.

[19] D. Kingma and J. Ba. “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[20] T. Stafylakis and G. Tzimiropoulos. “Combining residual networks with
LSTMs for lipreading,” INTERSPEECH, 2017, pp. 3652–3656.

[21] A. Bulat and G. Tzimiropoulos. “Two-stage convolutional part heatmap
regression for the 1st 3D face alignment in the wild (3DFAW) challenge,”
European Conference on Computer Vision (ECCV). 2016, pp. 616–624.

2726

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on May 30,2021 at 16:24:57 UTC from IEEE Xplore.  Restrictions apply. 


