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Multiple Sound Source Counting and Localization
Based on TF-Wise Spatial Spectrum Clustering

Bing Yang , Hong Liu , Cheng Pang , and Xiaofei Li

Abstract—This paper addresses the problem of multiple sound
source counting and localization in adverse acoustic environments,
using microphone array recordings. The proposed time-frequency
(TF) wise spatial spectrum clustering based method contains two
stages. First, given the received sensor signals, the spatial corre-
lation matrix is computed and denoised in the TF domain. The
TF-wise spatial spectrum is estimated based on the signal subspace
information, and further enhanced by an exponential transform,
which can increase the reliability of the source presence possi-
bility reflected by spatial spectrum. Second, to jointly count and
localize sound sources, the enhanced TF-wise spatial spectra are
divided into several clusters with each cluster corresponding to
one source. Sources are successively detected by searching the sig-
nificant peaks of the remaining global spatial spectrum, which is
formed using unassigned spatial spectra. After each new source de-
tection, spatial spectra are reassigned to detected sources accord-
ing to the dominance association between them. The interaction
between sources is reduced by iteratively performing new source
detection and spatial spectrum assignment. Experiments on both
simulated data and real-world data demonstrate the superiority
of the proposed method for multiple sound source counting and
localization in the environment with different levels of noise and
reverberation.

Index Terms—Source counting, multiple sound source localiza-
tion, TF-wise spatial spectrum clustering, signal subspace.

I. INTRODUCTION

MULTIPLE sound source localization using microphone
arrays is crucial for numerous acoustic signal process-

ing tasks, such as speech dereverberation, noise reduction and
blind source separation. In recent decades, a wide range of ap-
proaches have been developed for source localization, which
can be roughly classified into two categories: spatial spectrum
[1]–[3] and time-frequency (TF) processing [4], [5]. Despite
the great progress with these methods, the localization perfor-
mance is still greatly affected by unknown source number, ad-
verse acoustic conditions, etc. [6]–[8].
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The TF processing methods exhibit the ability to jointly count
and localize multiple sound sources. They generally assume that
at most one source is dominant over the others in the TF domain
due to the sparse property of speech signals. This assumption,
namely the W-disjoint orthogonal (WDO) assumption [9], can
simplify multiple source localization on broadband to single
source localization in individual TF bins. When combining TF
processing with spatial spectrum for effective multiple sound
source localization, two issues need to be considered in general:
1) How to build reliable TF-wise spatial spectrum to indicate
the source presence by its significant peak. 2) How to accurately
localize multiple sound sources according to TF-wise spatial
spectra, especially when the number of sources is unknown.

For individual TF bins where one source is dominant, various
methods have been exploited to build spatial spectrum as a func-
tion of source location, such as steered response power (SRP) [1]
and multiple signal classification (MUSIC) [2]. Among them,
the signal subspace information is investigated intensively, and
the eigenvectors of spatial correlation matrix (SCM) are demon-
strated to exhibit different properties. Generally, when SCM is
not considerably contaminated by noise, the principal eigen-
vector encodes the steering vector of one source, and spans the
signal subspace of this source [10], [11]. The remaining eigen-
vectors span the noise subspace and exhibit orthogonality to the
steering vector of the source [2], [12]–[14]. Different from the
structure of SCM, parameterized SCM is designed as a function
of candidate locations [15], [16]. The cue for localization is that
when parameterized SCM is steered toward the true source lo-
cation, the largest eigenvalue is maximized while all the other
eigenvalues are minimized [16]. An alternative cue is that the
determinant of parameterized SCM reaches its minimum at the
true source location [17], [18]. Though subspace methods can
achieve high-resolution localization for the fine division of can-
didate location space, most of them are sensitive to acoustic
interference, since SCM could be distorted by interference.

Robustness to acoustic interference is necessary for reliable
multiple sound source localization. Many processes are designed
to improve the robustness of localization to ambient noise, room
reverberation, interaction between sources, etc. Ito et al. utilized
the geometrical information of symmetric microphone arrays
[19] to improve the MUSIC performance in environments with
diffuse noise [20]. Huang et al. exploited the precedence ef-
fect [21] to robustly estimate direction of arrival (DOA) of each
source in reverberant scenarios [22]. Li et al. used the segmental
SCM subtraction method to obtain a noise-free SCM for sin-
gle speaker relative transfer function identification [23]. Pang
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et al. proposed a reverberation weighting method to separately
suppress the early and late reverberation while preserving the
localization cues [24]. Several processes dedicate to identifying
single source dominated TF bins, such as coherence test [25],
single source confidence measure [6] and direct path dominance
test [26]. They usually serve as the preprocessing stage to TF
processing methods, with the goal to discard the TF bins which
are severely affected by multiple sources or reverberation. Moti-
vated by these works, the signal subspace based spatial spectrum
is improved in this work to have an adaptability under different
adverse acoustic conditions.

In general, multiple source localization can be conducted in
three ways given TF-wise spatial spectra [27]. 1) Histogram
method [6], [11], [28]–[30]: Source location is estimated from
each TF-wise spatial spectrum, and these estimations are
collected to form a histogram which is used for localization. 2)
Global method [26], [27], [31], [32]: TF-wise spatial spectra of
all TF bins are united to obtain the global spatial spectrum from
which locations of sources are estimated. 3) Source-associated
method [10], [33]–[35]: For each source, associated TF-wise
spatial spectra are identified to construct the single-source
global spatial spectrum, and the source location is estimated
accordingly.

To tackle the case where the number of sources is unknown, a
common approach is to determine the number and locations of
sources by detecting significant peaks of location histogram or
global spatial spectrum [11]. The methods in [6], [34], [35] count
and localize sources one by one in a similar way to the matching
pursuit algorithm [36], which detect and remove contribution of
each source alternately until a stop criterion is satisfied. In [6],
each source is detected by maximizing the correlation between
direction-centered smooth pulse and DOA histogram, and then
the pulse-shaped histogram corresponding to the detected source
is removed. In [34], [35], each source is detected by searching the
highest peak of the global spatial spectrum, and then the TF bins
associated with the detected source are identified and removed.
Additionally, the iterative source counting and localization in
[35] is followed by a DOA refining process which iteratively
optimizes the TF bins used for localizing each source. Though
favorable performance can be achieved by these methods, the
performance is still affected by the interaction between sources
especially when sources are close to each other.

In this paper, we propose a novel multiple sound source count-
ing and localization method based on TF-wise spatial spectrum
clustering. The proposed method has the following procedures
and contributions.

First, the spatial correlation matrix (SCM) is estimated in the
TF domain using the received sensor signals. To reduce the signal
subspace distortion caused by diffuse noise, the SCM denoising
method [37] which is originally designed for MUSIC is adopted.
Considering the geometrical configuration of symmetric micro-
phone array and TF sparsity of speech signals, the noise-free
SCM is recovered by removing the diffuse noise from the noise-
contaminated SCM. For each single source dominated TF bin,
the similarity between the principal eigenvector of the noise-free
SCM and the steering vector related to all candidate directions
is calculated to estimate the TF-wise spatial spectrum. To make

the spatial spectrum more reliable to reflect the source pres-
ence possibility, an exponential transform is proposed, which
can suppress indistinctive peaks and preserve significant peaks
simultaneously.

Second, to jointly count and localize multiple sound sources,
a TF-wise spatial spectrum clustering algorithm is designed,
which contains two nested iterative procedures with the inter-
nal iterative procedure serving as a step of the external iterative
procedure. In the external iterative procedure, sources are suc-
cessively detected based on the spatial sparsity of sources. After
the detection of one source, the DOA information of all detected
sources are utilized to initialize the internal iterative procedure
where the spatial spectra dominated by different detected sources
are respectively distinguished and assigned to them. Then the
unassigned spatial spectra are employed for the next source
detection. The clustering algorithm divides the spatial spectra
into several clusters. The number and DOAs of sources are re-
spectively determined by the number of clusters and the spatial
spectra in each cluster. The dominance association between spa-
tial spectra and sources, which is adjusted by the internal itera-
tive procedure, helps to reduce the interaction between detected
sources from a spatial spectrum perspective. In addition, the in-
fluence of already detected sources on the detection of other
sources is reduced, since spatial spectra dominated by detected
sources have been removed and only remaining spatial spec-
tra are used for new source detection. Hence, multiple sound
sources are reliably counted, and their DOAs are estimated by
fusing the direction information associated with each source.

Overall, the proposed method is robust under different acous-
tic conditions, since SCM denoising and exponential transform
are employed to increase the reliability of TF-wise spatial spec-
trum, and the spatial spectrum clustering algorithm is designed
with the tolerance of interaction between sources. Furthermore,
the proposed method can simultaneously estimate the number
and DOAs of multiple sources, which is demonstrated to per-
form better than several other methods on both simulated and
real-world data. Though we mainly focus on counting and lo-
calizing speech sources in this paper, the proposed method can
also be applied to other audio sources whose signals are sparse
in the TF domain, such as some types of musical sources.

The remainder of this paper is organized as follows. Section II
formulates the signal model for multiple sound source counting
and localization. Section III describes the TF-wise spatial spec-
trum estimation. Section IV details the TF-wise spatial spec-
trum clustering algorithm. Experiments and discussions with
simulated and real-world data are presented in Section V, and
conclusions are drawn in Section VI.

II. SIGNAL MODEL

Consider K far-field speech sources observed by a uniform
circular array of M microphones in a noisy scenario as shown
in Fig. 1. The signal received by the mth microphone can be
modeled as:

xm(t) =
K∑

k=1

αmksk(t− τm,θk) + vm(t), (1)
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Fig. 1. Illustration of geometrical relationship, for a scenario where a uniform
circular array with M microphones observes K far-field sound sources. The
origin is defined at the center of the array.

where m ∈ {1, 2, . . . ,M} is the microphone index, k ∈ {1, 2,
. . . ,K} is the source index, sk(t) denotes the signal emitted
from the kth source, θk denotes the horizontal DOA of the kth
source observed in an anti-clockwise manner with respect to
0◦-ray, and vm(t) is the additive ambient noise received by the
mth microphone which is assumed to be uncorrelated with the
source signals. Here, αmk and τm,θk represent the propagation
attenuation factor and the time of arrival from the kth source to
the mth microphone, respectively. By applying the short-time
Fourier transform (STFT) to Eq. (1), the received signal can be
modeled in the TF domain as:

Xm(n, f) =

K∑

k=1

αmkSk(n, f)e
−jωf τm,θk + Vm(n, f), (2)

where n is the time frame index, f is the frequency band in-
dex, ωf is the angular frequency of the f th frequency band, and
Xm(n, f), Sk(n, f), Vm(n, f) represent the STFT coefficients
of xm(t), sk(t),nm(t), respectively. When expressed in a vector
form, the signal model can be rewritten as:

x(n, f) =

K∑

k=1

Sk(n, f)e(f, θk) + v(n, f), (3)

where

x(n, f) = [X1(n, f), X2(n, f), . . . , XM (n, f)]T ,

v(n, f) = [V1(n, f), V2(n, f), . . . , VM (n, f)]T ,

e(f, θk) = [α1ke
−jωfτ1,θk , α2ke

−jωfτ2,θk , . . . ,

αMke
−jωfτM,θk ]T .

Here, e(f, θk) represents the steering vector related to the DOA
θk, and (·)T denotes the transpose operation.

The propagation attenuation factors αmk for all sources and
microphones are assumed to be identical, and denoted by α.
Accordingly, taking the first microphone as the reference, the
steering vector can be expressed as:

e(f, θk) = αe−jωfτ1,θk × [1, e−jωf (τ2,θk−τ1,θk ), . . . ,

e−jωf (τM,θk
−τ1,θk )]T .

(4)

For far-field model where the propagation paths from one sound
source to different microphones are regarded to be parallel, the

relative time delay between signals captured by the mth mi-
crophone and the reference microphone for the kth source is
computed as:

τm,θk − τ1,θk =
dm,θk

c
=

lm sin(γm/2− θk)

c
. (5)

Here, as depicted in Fig. 1, dm,θk is the distance difference from
the kth source to the mth microphone and the reference, lm is
the distance between themth microphone and the reference, and
γm represents the angle of the mth microphone with respect to
0◦-ray. Considering the geometrical relationship between mi-
crophones, γm and lm are calculated as:

γm = (m− 1)
2π

M
, lm = 2r cos

(γm
2

− π

2

)
, (6)

where r denotes the radius of the microphone array.
Generally, the number of sources is unknown in practice.

Hence, given the sensor signals and the microphone array ge-
ometry, the task is to simultaneously estimate the number K and
the DOAs of sound sources {θ1, . . . , θK}.

III. TF-WISE SPATIAL SPECTRUM ESTIMATION

In this section, we estimate the spatial spectrum for the single
source dominated TF bins in the presence of acoustic interfer-
ences. For clarity, we first briefly present the related theoretical
basis. Then, the spatial correlation matrix (SCM) is calculated
and denoised without affecting the signal subspace. Finally, the
TF-wise spatial spectrum is estimated based on the signal sub-
space information and further enhanced by the exponential trans-
form.

A. Preliminaries

With x(n, f), the SCM for each TF bin is given by:

Rxx(n, f) = E
{
x(n, f)xH(n, f)

}
= Rcc(n, f) +Rvv(n, f),

(7)
where E{·} denotes expectation, (·)H denotes the conjugate
transpose operation, Rvv(n, f) represents the noise correlation
matrix, and Rcc(n, f) represents the noise-free SCM, which is
given by:

Rcc(n, f) = E(f)Rss(n, f)E
H(f). (8)

Here,

Rss(n, f) = E
{
s(n, f)sH(n, f)

}
,

s(n, f) = [S1(n, f), S2(n, f), . . . , SK(n, f)]T ,

E(f) = [e(f, θ1), e(f, θ2), . . . , e(f, θK)].
(9)

According to the spectral sparsity of speech signals, there
exist TF bins where one source is dominant in energy and has
significantly higher power than the others. The index of this
source is:

k̃(n, f) = arg max
k∈{1,...,K}

E
{
|Sk(n, f)|2

}
, (10)
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where | · | denotes the magnitude of complex number. In the fol-
lowing, the TF index of k̃(n, f) is omitted for simplicity when it
is utilized as a subscript. Ignoring the contribution of the sources
with relatively lower intensity, the noise-free SCM for multiple
sources is simplified to that for single source, which is given by:

Rcc(n, f) ≈ E
{∣∣Sk̃(n, f)

∣∣2
}
e(f, θk̃)e

H(f, θk̃). (11)

By multiplying e(f, θk̃) at both sides of Eq. (11), we have:

Rcc(n, f)e(f, θk̃) ≈ E
{∣∣Sk̃(n, f)

∣∣2
}∥∥e(f, θk̃)

∥∥2 e(f, θk̃),
(12)

where || · || denotes the Euclidean norm. It is obvious that
Rcc(n, f) is approximately a rank-1 matrix, and e(f, θk̃) is its
principal eigenvector, which spans the signal subspace of the
k̃(n, f)th source.

B. Spatial Correlation Matrix

In order to estimate the SCM, a common way to approximate
the expectation in Eq. (7) is averaging over different time frames.
However, by examining the rank of this SCM, it is not able to ef-
fectively distinguish two cases, i.e., the SCM involving only the
direct-path source and the SCM involving both the direct-path
and reflections, due to the temporal correlation between direct-
path and reflection signals. To overcome this, the expectation is
approximated by further smoothing over frequency bands [32],
[38]. Hence, the SCM for each TF bin is estimated by averaging
over a predefined range of time frames and frequency bands. It
is expressed as:

R̂xx(n, f) =
1

NnNf

n+Nn−1∑

n′=n

f+Nf−1∑

f ′=f

x(n′, f ′)xH(n′, f ′),

(13)
where Nn and Nf denote the number of time frames and fre-
quency bands used for approximating the SCM, respectively.
Nf is set to 8 and Nn is set to 4. Since the average is computed
over adjacent frequency bands, the resulting SCMs are highly re-
dundant over frequency. Besides, the TF-wise processing based
on R̂xx(n, f) is computationally expensive due to the following
eigen-analysis. To reach a tradeoff between computational com-
plexity and frequency diversity, these TF bins are subsampled
in frequency with a step of Nf/2, and only the subsampled TF
bins are utilized in the following steps.

The SCM is contaminated with additive ambient noise. The
power spectra of ambient noise are assumed to be identical for
all microphones. For spatially white noise, the noise correlation
matrixRvv(n, f) is a diagonal matrix. Such noise adds its power
to all eigenvalues of Rcc(n, f) uniformly without changing the
principal eigenvector. Although the circumstance with spatially
white noise is commonly considered for localization, diffuse
noise field has been shown to be a more reasonable model for
many practical noise fields [39]. Unlike spatially white noise,
diffuse noise is highly spatially correlated especially for small
arrays or at low frequency region [37]. The unknown spatial cor-
relation significantly degrades the precision of the signal sub-
space estimation.

To remove the diffuse noise without destroying the signal sub-
space, the following two assumptions are helpful. One is that
the spectral sparsity of speech signals makes Rcc(n, f) low-
rank. The other is that the diffuse noise has equivalent cross-
spectra for microphone pairs spaced by the same distance, and
consequently the geometrical symmetry of uniform circular ar-
rays makes Rvv(n, f) a circulant matrix [19], [20]. The circu-
lant matrix can be diagonalized by a unitary discrete Fourier
transform (DFT) matrix P, i.e., PHRvv(n, f)P is a diago-
nal matrix. According to Eq. (7), we obtain PHRvv(n, f)P =
PHRxx(n, f)P−PHRcc(n, f)P. Hence, the noise correla-
tion matrix only affects the diagonal entries of PHRxx(n, f)P,
and the off-diagonal entries of PHRxx(n, f)P is the same as
that of PHRcc(n, f)P. Here, the unitary DFT matrix P is in-
dependent of Rvv(n, f), and given by:

P =
1√
M

⎡

⎢⎢⎢⎣

1 1 · · · 1
1 ζ1 · · · ζM−1

...
...

. . .
...

1 ζM−1 · · · ζ(M−1)(M−1)

⎤

⎥⎥⎥⎦, (14)

with ζ = e−2πj/M .
Based on the aforementioned properties, Rcc(n, f) can be

estimated by [37]:

R̂cc(n, f) = arg min
Rcc(n,f)

1

2
‖Pϕ

{
PHRcc(n, f)P

}
PH−

Pϕ
{
PHR̂xx(n, f)P

}
PH‖2F + μ ‖Rcc(n, f)‖∗ ,

(15)
whereμ is a regularization factor,ϕ{·} denotes a function setting
the diagonal entries to zeros, ‖ · ‖F denotes the Frobenius norm
and‖ · ‖∗ denotes the trace norm. The Frobenius-norm term aims
to recover Rcc(n, f) from R̂xx(n, f), i.e., to remove the influ-
ence of diffuse noise. The trace-norm regularization imposes a
low-rank solution [40]. Under the constraint that Rcc(n, f) is a
positive semidefinite Hermitian matrix, this optimization prob-
lem can be solved by using the trace norm minimization algo-
rithm presented in [37]. In addition to diffuse noise, other types
of noise can also be removed as long as they have a circulant
correlation matrix. Especially, the isotropic correlation matrix
for spatially white noise is a special case of circulant matrix.

C. TF-Wise Spatial Spectrum

For each single source dominated TF bin, R̂cc(n, f) can be ap-
proximated as a rank-1 matrix. Through the eigenvalue decom-
position (EVD) of R̂cc(n, f), the principal eigenvector q1(n, f)
that approximately spans signal subspace is obtained. The rela-
tion between q1(n, f) and e(f, θk̃) can be expressed as [11]:

q1(n, f) ≈ e−jωfze(f, θk̃)∥∥e(f, θk̃)
∥∥ , (16)

where z is a real constant introduced by the complex EVD. The
principal eigenvector approximates the steering vector with an
extra complex constant gain, i.e., q1(n, f) approximately points
to θk̃. Hence, for each single source dominated TF bin, the simi-
larity between q1(n, f) and e(f, θk̃) is taken to build the spatial
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spectrum which can reflect the spatial possibility of source pres-
ence. Note that the signal subspace based spatial spectrum is
estimated locally for each TF bin, which is referred to as TF-
wise spatial spectrum.

In practice, spectral sparsity can be affected by multiple
sources or reverberation, which decreases the similarity between
q1(n, f) ande(f, θk̃). To overcome this, a binary TF weight [32]
is employed to select the single source dominated TF bins. The
TF weight is computed as:

w0(n, f) =

⎧
⎪⎨

⎪⎩

1, if
λ1(n, f)

λ2(n, f)
> Cth

0, otherwise

, (17)

where λ1(n, f) and λ2(n, f) denote the largest and second-
largest eigenvalues of R̂cc(n, f) respectively, and Cth denotes
a predefined threshold. The threshold Cth is set as 3 referring
to [26]. The TF bins with w0(n, f) = 1 are considered to be
dominated by single source.

To build the TF-wise spatial spectrum, the 360-degree azimuth
localization space is equally divided into D parts with each part
corresponding to one candidate direction. The set of candidate
directions is:

S =

{
0, 1× 360

D
, . . . , (D − 1)× 360

D

}
. (18)

The number of candidate directions D is set to 360 in this work.
For each single source dominated TF bin, the spatial spectrum
value is obtained by calculating the similarity between the princi-
pal eigenvector and the steering vector related to each candidate
direction. This is expressed as:

ρ(n, f, θ) =

∣∣qH
1 (n, f)e(f, θ)

∣∣
‖e(f, θ)‖ , (19)

where θ represents the candidate direction with θ ∈ S, and
e(f, θ) denotes the steering vector related to θ. By substituting
Eq. (16) into Eq. (19), ρ(n, f, θ) can be approximated by:

ρ(n, f, θ) ≈ |e(f, θk̃)He(f, θ)|
‖e(f, θk̃)‖‖e(f, θ)‖

. (20)

The theoretical value of ρ(n, f, θ) in Eq. (20) is found to be
irrelevant to the time frame index n. Besides, ρ(n, f, θ) ranges
from 0 to 1, and reaches its maximum at the true direction of the
local dominant source, i.e., θ = θk̃. Considering the 8-channel
microphone array described in Section V, we plot the theoret-
ical spatial spectrum as a function of the angular separation,
namely |θ − θk̃|, for each frequency band in Fig. 2. Here, θk̃ is
set to 0◦. It can be seen that the main peaks of spatial spectra are
reached when θ = θk̃. The spatial spectrum slowly varies with
an increasing angular separation for the low-frequency bands,
and has more and more spurious peaks for the high-frequency
bands. Since the spatial spectrum is usually used to reflect the
possibility that one active sound source is present at each can-
didate direction, the spurious peaks far from the true direction
should be low enough to avoid introducing ghost sources.

To increase the reliability of the spatial spectrum as an indi-
cator of the source presence possibility, an exponential function

Fig. 2. Theoretical TF-wise spatial spectrum as a function of the angular sep-
aration |θ − θk̃| (θk̃ = 0◦). Each curve corresponds to one frequency band, and
darker gray represents higher frequency.

is employed to transform the original spatial spectrum into a
domain where the higher spectrum value is maintained and the
lower spectrum value is weakened. Specifically, the Gaussian
function is adopted for the exponential transform. The improved
TF-wise spatial spectrum is expressed as:

ρ′(n, f, θ) = exp

{
−|1− ρ(n, f, θ)|2

2β2

}
, (21)

where exp{·} denotes the natural exponential function, and β
is a positive adjustable variable which controls the attenuation
degree of the lower spectrum value. Since the exponential trans-
form monotonically mapsρ(n, f, θ) toρ′(n, f, θ), the theoretical
ρ′(n, f, θ) also ranges from 0 to 1, and reaches its maximum at
the true direction of the local dominant source. The exponen-
tial transform indeed gives more significance to the high spatial
spectrum values. The illustration of the theoretical spatial spec-
trum as a function of the angular separation |θ − θk̃| is shown
in Fig. 2. Three typical values of β are given, namely 0.4, 0.1
and 0.01. It can be seen that a smaller value of β results in a
sharper main peak and a more significant attenuation of the spu-
rious peaks. For a larger β (i.e., 0.4), there is no much difference
between the spatial spectra with and without exponential trans-
form. A very small β may bring some adverse effect in practice,
i.e., the spatial spectrum value corresponding to the true source
direction could be significantly suppressed when it is not very
high. To obtain a tradeoff between the suppression of the spuri-
ous peaks and the preservation of true peaks, β is set to 0.1.

In the presence of reverberation or noise, the dominance of
the spatial spectrum value corresponding to the true source di-
rection becomes less prominent. For one TF bin, there are two
cases: 1) The spatial spectrum value corresponding to the true
source direction is still larger than the spurious peaks, for which
the exponential transform is able to highlight the true peak. 2)
The spurious peaks are comparable or larger than the spatial
spectrum value corresponding to the true source direction, for
which the exponential transform possibly harms the true peak.
However, for this case, it is reasonable to expect that all the spa-
tial spectrum values are not very high due to the low directivity
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Fig. 3. Spatial spectrum for three sources at 60◦, 180◦ and 240◦ in a simulated environment where RT60 = 250 ms and SNR = 5 dB (diffuse noise). Spectra
are obtained (a) with SCM denoising and exponential transform, (b) with exponential transform but without SCM denoising, (c) with SCM denoising but without
exponential transform, (d) without SCM denoising and exponential transform. First row: TF-wise spatial spectrum for each frequency band of one time frame.
Second row: normalized global spatial spectrum obtained by using TF-wise spatial spectra in single source dominated TF bins.

of reverberation and noise. As a result, the entire spatial spec-
trum of this TF bin is suppressed relative to the one of other TF
bins. In a way, exponential transform plays a role of selecting
TF bins.

To illustrate the importance of SCM denoising and exponen-
tial transform to TF-wise spatial spectrum estimation, a three-
source example is shown in Fig. 3. Note that the TF-wise spatial
spectrum estimation without SCM denoising means the noisy
SCM R̂xx(n, f) is used, rather than the denoised R̂cc(n, f).
The first row depicts the TF-wise spatial spectra for different
frequency bands. Comparing (a) with (b), it can be observed that
the spatial spectra with SCM denosing show sharper peaks espe-
cially for low-frequency bands, and the same observation can be
obtained from the comparison between (c) and (d). Comparing
(a) with (c) (or (b) with (d)), we see that with exponential trans-
form most spurious peaks and indistinctive peaks are removed
from the spatial spectra, and the main peaks are preserved and
become sharper. This phenomenon is more prominent at high-
frequency bands. The second row depicts the normalized global
spatial spectrum. The global spatial spectrum y0(θ) is computed
by summingρ′(n, f, θ) over all single source dominated TF bins,
and normalized by its maximum. Among the four figures, the
normalized global spatial spectrum in (a) has the most accurate
and sharpest peaks around the true directions.

IV. TF-WISE SPATIAL SPECTRUM CLUSTERING

The global spatial spectrum is expected to present evident
peaks only around true source directions as shown in Fig. 3(a).
However, under adverse acoustic conditions, it is risky to count
and localize sources based on the global spatial spectrum, since
the peaks of the TF-wise spatial spectra would possibly be
merged in the global spatial spectrum especially when sources
are close to each other. This phenomenon is illustrated in Fig. 4.
The interaction between sources from close directions causes
that the number of peaks in the global spatial spectrum is
smaller than the true number of sources, and the peak-associated
directions deviate from the true source directions. Instead, the

Fig. 4. Illustration of the impact of source interaction on the global spatial
spectrum of all sources, in a simulated four-source environment where RT60 =
250 ms and SNR = 10 dB. The four sources are respectively located at 90◦,
120◦, 210◦ and 240◦.

single-source global spatial spectra exhibit peaks around the true
source locations with high precision. Note that, in Fig. 4, the
global spatial spectrum for each source is obtained using the
spatial spectrum-to-source assignment information, i.e., the TF-
wise spatial spectra are assigned to the source direction (among
90◦, 120◦, 210◦ and 240◦) closest to the local dominant source
direction. This observation motivates us to classify the TF-wise
spatial spectra into several clusters with each cluster correspond-
ing to one source, and then estimate DOAs of sources from these
clusters. The difficulty for spatial spectrum clustering lies in
how to determine the number of clusters because the number
of sources is usually unknown in realistic environment. Since
the estimation of spatial spectrum clusters and their number are
mutually affected, a method for jointly determining the two com-
ponents is proposed.

The following two steps are often used in the proposed clus-
tering method, 1) fusing a set of TF-wise spatial spectra, and 2)
estimating DOA from the fused spectrum. Therefore, we first
give the general formulations of them. The fused spectrum is
computed by summing the TF-wise spatial spectra, which is
formulated as:

y(θ) =
∑

n,f

w(n, f)ρ′(n, f, θ), (22)
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where w(n, f) denotes the TF weight whose binary value indi-
cates the usage of the TF-wise spatial spectra (1 for selecting and
0 for discarding). Whenw(n, f) = w0(n, f), the fused spectrum
is the global spatial spectrum for all sources, and represented by
y0(θ). When w(n, f) associates with the TF bins dominated by
one source, the fused spectrum is the single-source global spatial
spectrum, and represented by yk′(θ). The DOA associated with
the maximum of the fused spectrum is:

θ̂ = argmax
θ∈S

y(θ). (23)

A. Iterative Source Detection Framework

In practice, sources are sparsely distributed at the candidate
directions, and the number of sources is usually much smaller
than the number of candidate directions. Based on the spatial
sparsity of sources, an iterative source detection framework is
designed. The details of each iteration are stated as follows.

New source detection: At the beginning of the kth iteration,
k − 1 sources have already been detected and the remaining
global spatial spectrum yΔ(θ) has been computed. By applying
Eq. (23) to yΔ(θ), the kth new potential source is detected and
its DOA θ̂k is estimated. Note that for the first iteration, yΔ(θ)
is initialized as y0(θ).

Association adjustment: With the k detected sources, the as-
sociation between sources and TF-wise spatial spectra (or TF
bins) are adjusted. The association is indicated bywk′(n, f)with
k′ ∈ {1, 2, . . . , k}. Here, k′ is the index of detected sources, and
wk′(n, f) is the TF weight for the TF bins associated with the
k′th source. According the adjusted association, the DOA esti-
mates θ̂k′ are also updated.

Remaining determination: Since the TF-wise spatial spectra
associated with the detected sources are no longer used in the
next iteration, the remaining TF-wise spatial spectra (or TF bins)
need to be determined. The TF weight for the remaining TF bins
is expressed as:

wΔ(n, f) = w0(n, f)−
k∑

k′=1

wk′(n, f). (24)

The remaining global spatial spectrum is updated by fusing
the TF-wise spatial spectra without the association of detected
sources:

yΔ(θ) =
∑

n,f

wΔ(n, f)ρ
′(n, f, θ) = y0(θ)−

k∑

k′=1

yk′(θ). (25)

By subtracting yk′(θ) from the global spatial spectrum of all
sources, the contribution of the detected sources is removed,
and the influence of the k detected sources on the (k + 1)th new
source detection is reduced.

Stop criterion: In order to check whether the kth potential
source is a real source or not, the change in the remaining TF
bins and the remaining global spatial spectrum between the
kth and (k − 1)th iterations is regarded as the contribution
of this source. When a real source is detected, wΔ(n, f) or
the peak value of yΔ(θ) shows significant changes between
two adjacent external iterations. In contrast, when all the real

sources have already been detected before the kth iteration,
the changes caused by the new potential source is inapparent.
Hence, the kth potential source is determined to be nonexistent
if its contribution is indistinctive, i.e.,
∑

n,f

∣∣∣wΔ(n, f)
(k) − wΔ(n, f)

(k−1)
∣∣∣ < η1

∑

n,f

w0(n, f), (26)

or
∣∣∣∣max
θ∈S

yΔ(θ)
(k) −max

θ∈S
yΔ(θ)

(k−1)

∣∣∣∣ < η2
∑

n,f

w0(n, f), (27)

where the superscript (k) denotes the index of iteration,
∑

n,f

w0(n, f) represents the number of single source dominated TF
bins, and η1 and η2 are the predefined factors. In general, a large
(or small) value of η1 or η2 leads to a small (or large) number
of iterations. To achieve the best source counting performance,
η1 and η2 are empirically set to 0.02 and 0.003, respectively.
The maximum number of iterations is set to 10 to avoid a
possible infinite number of iterations. If Eq. (26) or (27) is
satisfied, which indicates that there are only k − 1 sources, the
iterative procedure will stop. Otherwise, the estimated number
of the sources K̂ is updated as k, the set of DOA estimates Θ̂ is
updated as {θ̂1, . . . , θ̂k}, and the iterative procedure continues
to detect the next source.

The proposed iterative source detection framework can be
seen as a generalization of the iterative contribution removal
(ICR) algorithm presented in [34] and [35]. The generalization
lies in that: 1) In the association adjustment process of each iter-
ation, the ICR algorithm only adds the association between the
newly detected source and TF bins, while the proposed source
detection framework does not have this limitation and can adjust
the association between all detected sources and TF bins. 2) The
proposed framework can reestimate the DOAs of all temporar-
ily detected sources according to the adjusted association after
each new source detection, while the ICR algorithm cannot. The
method in [35] can be regarded as an ICR algorithm followed
by a DOA refining process, which is referred to as ICR+R in
this work. Though the DOA reestimation is also provided by
ICR+R, it is implemented by a DOA refining process after all
sources are detected (i.e., after the ICR algorithm).

B. Proposed Clustering Method

The proposed clustering method is based on the iterative
source detection framework. The three main parts, namely new
source detection, association adjustment and remaining determi-
nation, are iteratively performed. In this framework, the associa-
tion between sources and TF-wise spatial spectra is crucial to the
performance. On the one hand, the DOA of each detected source
is determined by the set of associated TF-wise spatial spectra.
On the other hand, the TF-wise spatial spectra with no associated
detected sources will be utilized for the next source detection.
The dominance association between sources and TF-wise spa-
tial spectra is considered for the association adjustment. With the
estimated DOAs of all detected sources, namely {θ̂1, . . . , θ̂k},
the association between the TF-wise spatial spectra and their
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dominant sources is built in an iterative manner. To avoid con-
fusion, the iteration for association adjustment is called internal
iterative procedure while the iteration for source detection is
called external iterative procedure. The details of each internal
iteration are described as follows.

Spatial spectrum assignment: The TF-wise spatial spectra
ought to be assigned to their respective dominant source. As
shown in Fig. 2, ρ′(n, f, θ) for each TF bin approximately mono-
tonically decreases with the increasing deviation of θ from θk̃.
The candidate direction with a larger spectrum value tends to be
closer to the direction of local dominant source. Hence, to de-
termine which source is possibly dominated in the (n, f)th TF
bin, the largest spectrum value and corresponding source index
are searched over all detected sources, which are formulated as:

S(n, f) = max
k′∈{1,...,k}

ρ′(n, f, θ̂k′), (28)

k̃(n, f) = arg max
k′∈{1,...,k}

ρ′(n, f, θ̂k′). (29)

The largest spectrum value S(n, f) is compared with a prede-
fined similarity threshold Sth (ranging from 0 to 1) to further
check whether the dominance of the k̃(n, f)th source is reliable.
When S(n, f) > Sth, the spatial spectrum in the (n, f)th bin is
thought to be dominated by the k̃(n, f)th source. Accordingly,
the dominance association between the TF-wise spatial spectra
and detected sources is represented by:

wk′(n, f) =

{
1, if k′ = k̃(n, f) and S(n, f) > Sth

0, otherwise
. (30)

Regarding the value of wk′(n, f), 1 means that the spatial spec-
trum in the (n, f)th bin is assigned to the k′th source. The spatial
spectra dominated by different sources are separated through
the spatial spectrum assignment, and consequently the interac-
tion between detected sources is reduced. Note that only spatial
spectra in single source dominated TF bins are considered for
the assignment. With a relatively largerSth, a smaller number of
spatial spectra are assigned to sources. The choice of Sth deter-
mines the spatial spectra that are employed to estimate the DOAs
of detected sources, and the remaining spatial spectra that are
utilized to detect the next potential source. Hence, Sth is crucial
to the localization performance, and we discuss the setting of
this parameter in Section V.

DOA estimation: Following Eq. (22), the single-source global
spatial spectrum yk′(θ) is computed for k′ ∈ {1, . . . , k} using
wk′(n, f). The DOA estimate of each source, namely θ̂k′ , is ob-
tained by maximizing yk′(θ) as Eq. (23). These DOA estimates
are employed to guide the spatial spectrum assignment of the
next internal iteration.

Stop criterion: The internal iteration terminates when the
overall similarity almost remains the same between adjacent
iterations. The overall similarity is obtained from all assigned
spatial spectra, namely

∑k
k′=1 yk′(θ̂k′). The stop criterion is for-

mulated as:
∣∣∣∣∣

k∑

k′=1

yk′(θ̂k′)(i) −
k∑

k′=1

yk′(θ̂k′)(i−1)

∣∣∣∣∣ < δ, (31)

Fig. 5. Flowchart of the proposed TF-wise spatial spectrum clustering algo-
rithm for joint source counting and localization. The external iterative procedure
is aimed at counting sources one by one and the number of valid iterations cor-
responds to the number of source. The internal iterative procedure is designed
to optimize the assignment of the spatial spectra to detected sources and refine
the DOA estimates of sources.

where the superscript (i) denotes the index of internal iteration,
and δ is a predefined threshold that controls the degree of as-
sociation adjustment. To guarantee a sufficient adjustment of
dominance association with a small number of iterations, δ is
empirically set to 1. To avoid a possible infinite number of inter-
nal iterations, the maximum number of iterations is set to 5, since
the iterative procedure usually terminates before 5 iterations in
our experiments.

The proposed clustering method is summarized in Fig. 5,
which includes external and internal iterative procedures. In each
external iteration, one new cluster (source) is detected based on
the remaining TF-wise spatial spectra, and then the TF-wise
spatial spectra are reassigned to the already detected clusters
through the internal iterative procedure.

V. EXPERIMENTS AND DISCUSSIONS

Experiments are performed on simulated and real-world data
using an 8-channel uniform circular array with radius r = 5 cm.
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Fig. 6. Illustration of the SSC, ICR and ICR+R, in a simulated four-source environment where RT60 = 250 ms and SNR = 10 dB. The four sources are
respectively located at 90◦, 120◦, 210◦ and 240◦. The processes of our SSC method and ICR/ICR+R methods are illustrated on the left and right of the vertical
dashed line, respectively. For the SSC method, (a) shows the remaining TF bins, and the new source detection procedure, and (b) shows the TF bin association
adjustment procedure. The algorithm iterates between (a) and (b), namely from one row of (a) to the same row of (b) and to the next row of (a), and so on. More
specifically, (a) left is the remaining (unassigned) TF bins, and (a) right is the remaining global spatial spectrum obtained by summing up the unassigned TF-wise
spatial spectra, from which one new source is detected by searching the candidate direction with the largest spectrum value. (b) left shows the TF bins that are
already assigned to one source, with one color for each source, and (b) right shows the global spatial spectrum for each source which is obtained by summing up
the corresponding TF-wise spatial spectra. For the ICR method, the left column is the remaining TF bins, and the right column is the corresponding remaining
global spatial spectrum. The last row summarizes the final output of ICR, with the left column corresponding to the removed TF bins associated with each source.
The DOA refining process refines the final output of ICR. The left column is the TF bins assigned to each source, and the right column is the corresponding global
spatial spectrum for each source.

In both cases, the array signals used for localization are with a
duration of 1 s. The signal sampling rate is 16 kHz. The array
signals are enframed by a window of 32 ms (512 samples) with a
frame shift of 16 ms (256 samples). Only the frequency ranging
from 0 to 4 kHz is considered for source localization.

The performance of multiple sound source localization is eval-
uated in two aspects, namely source counting and DOA estima-
tion. The accuracy of source counting is measured with the recall
rate, precision rate and F-score, which are respectively defined
as:

R =
K̂s

K
, P =

K̂s

K̂
, F = 2

P ×R

P +R
(32)

where K̂s is the number of successfully localized sources. The
localization of each source is considered to be successful if
the difference between the estimated DOA and the real DOA
is smaller than a predefined threshold (namely 10◦ unless oth-
erwise stated). The recall and precision rates reflect the missed
and false detections of sources respectively, while the F-score
reflects the overall counting performance. These three measures
can also reflect the accuracy of DOA estimation to some extent.
For all the three measures, a larger value indicates a better count-
ing and localization performance. For the successfully localized
sources, the accuracy of DOA estimation is measured with the
mean absolute error (MAE) between the estimated DOAs and
the ground-truth DOAs.

To evaluate the effectiveness of the proposed TF-wise spatial
spectrum clustering (SSC) method, three sound source counting
and localization methods are taken for comparison, namely di-
rect peak counting (DC) [11], ICR [34], and ICR+R [35]. For fair
comparison, all the methods use the TF-wise spatial spectrum
proposed in this work. They are based on the combination of
spatial spectrum and TF processing. The DC method estimates
the number and DOAs of sources by searching the significant
peaks of y0(θ) whose values are larger than a predefined thresh-
old. The ICR, ICR+R and our method count and localize each
source successively based on the association between the TF
bins and sources. The ICR method in [34] is adapted to the use
of the TF-wise spatial spectra, and it is identical to the counting
part of ICR+R in practical implementation.

A. An Example of Spatial Spectrum Clustering

To illustrate how the SSC, ICR and ICR+R methods work on
the TF-wise spatial spectra, an example is shown in Fig. 6 using
the same data as in Fig. 4. At the first of the SSC method, the
spatial spectra in single source dominated TF bins are used to
estimate the DOA of the first source (227◦). Then, the associa-
tion between spectra and the first source is adjusted, and only
the spectra assigned to the first source are used to reestimate
its DOA (229◦). The remaining TF bins, which excludes the al-
ready assigned TF bins, are utilized to localize the second source

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 07,2021 at 08:46:07 UTC from IEEE Xplore.  Restrictions apply. 



1250 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 27, NO. 8, AUGUST 2019

Fig. 7. Performance (F-score) versus similarity threshold Sth for different settings of TF-wise spatial spectrum estimation method. Results are obtained in three
simulated four-source scenarios with (a) RT60 = 400 ms and SNR = 25 dB (diffuse noise), (b) RT60 = 200 ms and SNR = 0 dB (spatially white Gaussian noise),
(c) RT60 = 200 ms and SNR = 0 dB (diffuse noise).

(112◦). Considering the currently available DOA estimates (229◦

and 112◦), the association between the TF-wise spatial spectra
and the two detected sources is adjusted, and the DOA of the
two sources are reesimated (229◦ and 116◦). Similar actions are
performed to localize the following sources. When sources are
gradually detected, the change in wΔ(n, f) or yΔ(θ) between
iterations becomes smaller. The iterative procedure stops when
the change introduced by the fifth source is found to be insignif-
icant. The final DOA estimates of the four sources are obtained
in the association adjustment before the fifth source detection
(88◦, 120◦, 211◦ and 239◦). It can be seen that the data process-
ing of the proposed method is indeed a clustering of the TF-wise
spatial spectra according to their dominant sources. For the ICR
method, the iteration stops when the change introduced by the
fourth source is indistinctive. The DOA estimates provided by
ICR are 114◦, 210◦ and 227◦. With the DOA refining, the DOA
estimates are optimized and become 114◦, 209◦ and 239◦. Since
the TF-wise spatial spectra are iteratively removed and the re-
maining spectra are used for new source detection in the ICR
method, there still remains the peak merging problem caused
by the interaction between sources, especially for the detection
of the first few sources. The peak merging problem results in a
cumulative error in estimating the DOAs and determining the
remaining TF-wise spatial spectra used for next source detec-
tion, which further affects the overall counting and localization
results. In the ICR+R method, though the DOA refining process
helps to optimize the DOA estimates obtained from the ICR al-
gorithm, it fails to change the estimated number of sources. In
contrast to the ICR and ICR+R methods, the proposed method
iteratively adjusts the association between TF-wise spatial spec-
tra and sources after each source detection, and aims at cluster-
ing the TF-wise spatial spectra. In this way, the peak merging
problem is suppressed and better localization performance is
achieved.

B. Evaluation With Simulated Data

Simulated data is obtained from a room with the size of 6 m ×
5 m × 3 m. The microphone array is placed at the center of the
room. Sound sources are located in same horizontal plane as
the array with a array-to-source distance of 1.5 m. The direc-
tions of sources are randomly set in the range from 0◦ to 360◦

with an interval of 5◦, and the minimum angular separation be-
tween sources is set to 30◦ unless otherwise stated. The speech
recordings from the TIMIT database [41] are taken as the source
signals. To generate the room impulse responds (RIRs), the im-
age method [42] implemented using toolbox [43] is adopted.
The microphone signals are obtained by convolving the clean
source signals with the generated RIRs. To control the signal-
to-noise ratio (SNR), additive ambient noise is properly scaled
and added to each microphone signal. Here, diffuse noise [39]
is utilized unless otherwise stated.

1) Influence of Sth: We investigate the effect of the param-
eter Sth on the localization performance. In Fig. 7, the F-score
obtained by the TF-wise spatial spectrum clustering algorithm is
depicted as a function ofSth for different settings of SCM denos-
ing and exponential transform. The simulations are performed
in the four-source scenarios with different acoustic conditions:
RT60 = 400 ms and SNR = 25 dB (diffuse noise) in (a), RT60 =
200 ms and SNR = 0 dB (spatially white Gaussian noise) in (b),
and RT60 = 200 ms and SNR = 0 dB (diffuse noise) in (c). The
presented results are an average of 100 instances with different
source directions.

When exponential transform is applied, the proposed SSC
method performs consistently with increasing Sth under differ-
ent acoustic conditions. With increasing Sth, the F-score varies
slowly when Sth < 0.8, and drops sharply when Sth > 0.8. Con-
sidering different acoustic conditions, the global optimal perfor-
mance can be achieved when Sth ranges from 0.4 to 0.7. When
exponential transform is not applied, the F-score increases un-
til Sth reaches about 0.8, and decreases when Sth > 0.85. For
this case, the global optimal performance can be obtained when
Sth varies from 0.85 to 0.9. The reason for that an improper
setting of Sth could lead to a bad localization performance is
stated as follows. For extremely small Sth (approximate to 0),
too many TF bins are assigned to the early detected sources,
and the contribution of a new source is possibly inapparent. For
extremely large Sth (approximate to 1), only a small number
of TF bins are assigned to each source. Both cases can make
the external iterative procedure stop before all real sources are
detected. Besides, when exponential transform is not applied,
there are several spurious peaks in TF-wise spatial spectra. Due
to the ambiguity caused by the spurious peaks, using relatively
smaller Sth will introduce a large error to the assignment of the
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TABLE I
PERFORMANCE (F-SCORE) FOR DIFFERENT SETTINGS OF THE TF-WISE SPATIAL SPECTRUM ESTIMATION METHOD, AND FOR DIFFERENT LOCALIZATION METHODS

TF-wise spatial spectra to detected sources, which can further
affects the stop of external iterative procedure.

The parameter Sth largely affects the localization perfor-
mance. The values of Sth that achieve the optimal localization
performance are actually quite consistent under different acous-
tic conditions. It can be observed from Fig. 7 that the optimal
performance for different acoustic conditions is achieved with
the similar Sth setting. Accordingly, Sth is set to 0.5 for SSC
when using the TF-wise spatial spectrum estimation method
with SCM denoising and exponential transform, which is found
to be the optimal value under various acoustic conditions in terms
of noise levels, reverberation times and number of sources. Sim-
ilarly, based on some preliminary experiments, the values of Sth

are set to 0.55 for both ICR+R and ICR when using the TF-wise
spatial spectrum estimation method with SCM denoising and
exponential transform.

The effectiveness of SCM denoising and exponential trans-
form to localization performance is also verified in Fig. 7. When
the diffuse noise is significant, i.e., in Fig. 7(c), the method with
SCM denosing achieves better optimal performance compared
with that without SCM denosing. This verifies that the SCM
denoising can improve the localization robustness against dif-
fuse noise. By applying exponential transform, the range of Sth

that achieves the optimal performance is enlarged, and the set-
ting of Sth is facilitated accordingly. This is mainly attributed
to the enlarged gap between the large and small spectrum val-
ues by the exponential transform. To further confirm the effec-
tiveness of SCM denoising and exponential transform, a more
detailed comparison is shown in Table I. Note that the presented
F-scores represent the optimal performance of each setting after
parameter selection. For the DC method, the threshold for de-
tecting significant peaks is set to 0.2 times the maximum value
of y0(θ), which achieves a good tradeoff for DC under different
acoustic conditions. It can be seen that, with the increasing of
the noise level, the performance improvement caused by SCM
denoising becomes more prominent. The performance is also
improved by the exponential transform, which is more obvious
for ICR+R, ICR and DC. For each localization method, the TF-
wise spatial spectrum estimation with both SCM denoising and
exponential transform outperforms the other three settings. Be-
sides, SSC tends to outperform the other localization methods
with the same spectrum setting, even when SCM denoising and
exponential transform are not adopted. It confirms that the ad-
vantage of SSC over the other methods is not due to the use of
SCM denoising and exponential transform.

2) Performance Comparison: The comparison of the pro-
posed method with ICR+R, ICR and DC is carried out in the
environments with different SNRs, reverberation times and num-
bers of active sources. The number of active sound sources is
in the range 2 to 5. Fig. 8 shows the resulting F-scores. It can
be observed that the SSC method outperforms the other three
methods for almost all conditions. The superiority of the SSC is
more prominent when the acoustic condition worsens. For exam-
ple, under the five-source case with RT60 = 250 ms and SNR =
0 dB, the F-score of SSC is about 0.84, and exceeds ICR+R, ICR
and DC by about 0.15, 0.25 and 0.5 respectively. As the number
of sources, the SNR or the RT60 increases, the performance of
all the methods degrades due to increased distortion caused by
acoustic interference. The performance degradation of SSC is
relatively smaller among the four methods, indicating that it is
more robust against acoustic interference.

Fig. 9 depicts a comprehensive performance comparison in
terms of recall rate, precision rate, F-score and MAE of all the
four methods. The performance is obtained for different numbers
of sources in the simulated environment where RT60 = 250 ms
and SNR = 10 dB. From the recall rate, precision rate and F-
score, it can be inferred that the SSC method achieves the least
missed and false source detections. ICR+R and ICR perform
worse than SSC in both aspects, especially when the number
of sources increases. The DC method provides the worst per-
formance for source detection, and tends to underestimate the
number of sources. For the accuracy of DOA estimation, SSC
achieves a comparable MAE to ICR+R, which is lower than ICR
and DC. The performance of both source counting and DOA es-
timation degrades with a increasing number of sources.

An example is shown in Fig. 10 to illustrate the behavior of
the tested methods. In this instance, RT60 is 250 ms and SNR
is 10 dB. The static speech sources are located at 60◦, 150◦,
180◦, 230◦ and 310◦ around the array. As indicated by the gray
dots in Fig. 10, during the twenty-second test period, the number
of active sources increases from two to five and then decreases
to two again. The number and DOAs of sources are jointly esti-
mated for every one-second sensor recording with a step of 0.1 s.
Since one-second history recording is used for each estimation,
the DOA estimation is delayed for certain period after sources
become active or inactive. For sources located at 60◦ and 310◦

which are far away from other sources, the performance of all
the four methods is comparable and acceptable. For closely lo-
cated sources at 150◦, 180◦ and 230◦, the proposed SSC method
shows a significant advantage over the compared methods.
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Fig. 8. Performance (F-score) comparison of different methods in the simulated scenarios with (a) different SNRs and numbers of sources (RT60 = 250 ms),
(b) different RT60s and numbers of sources (SNR = 20 dB).

Fig. 9. Detailed performance (recall rate, precision rate, F-score and MAE)
comparison of different methods in the simulated scenarios with different num-
ber of sources (RT60 = 250 ms, SNR = 10 dB).

Generally, the SSC method achieves the least missed and false
source detections and the most accurate DOA estimation, which
manifests the superiority of the proposed method for joint source
counting and localization. The ICR+R method provides slightly
better results in terms of the accuracy of DOA estimation than
ICR, which is attributed to the DOA refining process. The DC
method performs the worst, and the significant performance gap
between scattered sources and gathered sources confirms that
DC is sensitive to the angular separation between sources.

3) Spatial Resolution: To investigate the spatial resolution of
each method, namely the minimum angular separation between
two sources when they can be successfully counted and local-
ized, the F-score is plotted as a function of the angular separation
from 10◦ to 180◦ with a step of 10◦ in Fig. 11. The localization
of each source is considered to be successful if the estimated

Fig. 10. Illustration of joint source counting and localization using SSC,
ICR+R, ICR and DC respectively, in a simulated environment where RT60 =
250 ms and SNR = 10 dB.

DOA deviates no more than 5◦ from the real DOA. The number
of sources is two, RT60 is 250 ms and SNR is 15 dB. To produce
various instances, the two sources are rotated with 7 different
angles (from 0◦ to 90◦ with a step of 15◦) from their initial lo-
cations, and for each rotation 10 different source signals are set.
With regard to each angular separation, the presented results are
averaged over these 70 instances.

It can be observed that SSC fails to successfully count and
localize sources with an angular separation of 10◦, since the
contribution of two closely located sources cannot be effec-
tively separated. As the angular separation increases from 10◦

to 20◦, the F-score for SSC increases sharply. Accordingly, we
can say that the spatial resolution of SSC with the given mi-
crophone array in this environment is about 20◦. The proposed
SSC method achieves better spatial resolution than ICR+R, ICR
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Fig. 11. Performance (F-score) versus angular separations for different meth-
ods. Results are obtained in a simulated two-source scenario where RT60 = 250
ms and SNR = 15 dB.

TABLE II
COMPUTATION TIME [S] OF DIFFERENT METHODS

and DC especially when the angular separation between sources
is smaller than 60◦. The advantage is mainly attributed to the
reduced source interaction by the proposed iterative source de-
tection framework and the dominance association adjustment.

4) Computational Complexity: The proposed method
consists of three parts, namely SCM computation (see
Section III-B), TF-wise spatial spectrum estimation (see
Section III-C) and TF-wise spatial spectrum clustering (see
Section IV). The computational complexity of SCM computa-
tion is dominated by the diffuse noise removal that consists of
an iterative optimization procedure for each TF bin. Hence, the
main complexity of this part depends on the number of TF bins
and the number of optimization iterations. The computational
complexity of the TF-wise spatial spectrum estimation is related
to the number of TF bins and the number of candidate directions.
Since the clustering part is implemented based on the selected
TF-wise spatial spectra, its computational complexity depends
on the number of single source dominated TF bins, the number
of candidate directions, and the number of external and internal
iterations. In this work, we implement the ICR+R, ICR and
DC methods using the same TF-wise spatial spectra as in the
proposed method, hence their computational complexity only
differs in the localization procedure.

We implement SSC, ICR+R, ICR and DC in Matlab, and
run them on an Intel CPU. The simulated microphone signals
are generated with RT60 = 250 ms and SNR = 20 dB. The
number of sources is set from 2 to 5. For each source-number
configuration, 100 localization instances are performed, with
a signal duration of 1 s for each instance. Table II reports the
computation time averaged over all localization instances for
each source-number configuration. The proposed method has a
slightly higher computation time than the other methods. With
the increasing number of sources, the computation time of the
proposed method grows a little, while the computation time of
the other three methods keeps almost constant. Table III lists

TABLE III
COMPUTATION TIME [S] OF DIFFERENT PARTS OF THE PROPOSED METHOD

TABLE IV
PERFORMANCE (F-SCORE) COMPARISON OF DIFFERENT METHODS IN THE

REALISTIC ENVIRONMENT

the computation time of each part of the proposed method. The
SCM computation represents a large proportion in the overall
computation time. Along with the increasing of the number of
sources, the computation time of SCM computation and TF-wise
spatial spectrum estimation remains almost constant, while the
computation time of clustering part grows.

C. Evaluation With Real-World Data

Real-world data is collected in a normal office room which
has approximately identical dimensions and microphone place-
ment to that for simulated data. The RT60 of this room is about
400 ms and the SNR is about 10 dB. We use eight Shure SM93
omnidirectional microphones1 to constitute the uniform circular
array. The microphone array together with a TASCAM US-16×
8 USB sound card2 is used for audio recording. To create active
sound sources, the audio files selected from the TIMIT database
are played by a loudspeaker. The loudspeaker is located around
the array with a distance of 1.5 m, in the same horizontal plane
as the array. Sources from the directions 48◦, 94◦, 151◦, 180◦,
241◦, 302◦, 359◦ are recorded separately, and K out of the 7
single-source recordings are selected and superimposed to form
multi-source sensor signals. Hence, for K = 2, 3, 4 and 5, we
respectively have 21, 35, 35 and 21 source direction combina-
tions. For each source direction combination, 10 instances with
different source signals are used for performance evaluation.

Table IV shows the performance comparison in terms of F-
score of the four localization methods. It can be observed that
the proposed SSC method achieves the highest F-score under
all conditions, which demonstrates the effectiveness of the pro-
posed iterative source detection framework and the dominance
association adjustment in realistic scenarios. ICR+R and ICR
obtain relatively worse performance. The DC method performs
the worst and its performance degrades significantly with in-
creasing number of sources. Overall, the performance measures

1http://www.shure.com/americas/products/microphones/sm/sm93-lavalier-
microphone

2http://tascam.cn/product/us-16x08/
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in the realistic environment are almost consistent with the results
obtained on the simulated data.

VI. CONCLUSION

This paper proposes a TF-wise spatial spectrum clustering
method to robustly count and localize multiple sound sources
in adverse acoustic environments. The SCM denoising algo-
rithm is adopted to improve the robustness of spatial spectrum
against diffuse noise. The exponential transform is designed to
enlarge the gap between large and small spectrum values, which
can increase the reliability of spatial spectrum as an indicator
of the source presence possibility. The two improvements are
verified to guarantee a favorable performance under different
acoustic conditions. The TF-wise spatial spectrum clustering al-
gorithm is proposed for joint source counting and localization.
The characteristics of the proposed algorithm lie in: 1) The spa-
tial spectra are gradually clustered without using a priori about
the number of sources, which is realized by the iterative source
detection framework. 2) The spatial spectra in each cluster are
dominated by the same source, which is ensured by the dom-
inance association adjustment. Both of these two aspects help
to reduce the interaction between sources, and hence superior
performance can be achieved even when sources are close to
each other. Experiments conducted on both simulated and real-
world data demonstrate that the proposed method can achieve
significant improvement in joint source counting and localiza-
tion when compared with several other methods. In addition, the
proposed method shows superior adaptability under various of
conditions including different levels of noise and reverberation,
numbers of sources and angular separations between sources.

In this work, the association adjustment is crucial to the lo-
calization performance. However, a small angular separation of
sources or a large number of sources may increase the ambiguity
of the association between spatial spectra and sources. In this
case, other acoustic features (e.g., pitch) can be considered to
correct the ambiguous association. Since this work only deals
with the static sources, we may try to reduce the complexity of
the proposed method and extend it for real-time localization of
moving sources in the future.
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