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AO2-DETR: Arbitrary-Oriented Object
Detection Transformer

Linhui Dai , Hong Liu , Member, IEEE, Hao Tang , Zhiwei Wu , and Pinhao Song

Abstract— Arbitrary-oriented object detection (AOOD) is a
challenging task to detect objects in the wild with arbitrary
orientations and cluttered arrangements. Existing approaches
are mainly based on anchor-based boxes or dense points,
which rely on complicated hand-designed processing steps and
inductive bias, such as anchor generation, transformation, and
non-maximum suppression reasoning. Recently, the emerging
transformer-based approaches view object detection as a direct
set prediction problem that effectively removes the need for
hand-designed components and inductive biases. In this paper,
we propose an Arbitrary-Oriented Object DEtection TRans-
former framework, termed AO2-DETR, which comprises three
dedicated components. More precisely, an oriented proposal
generation mechanism is proposed to explicitly generate oriented
proposals, which provides better positional priors for pooling
features to modulate the cross-attention in the transformer
decoder. An adaptive oriented proposal refinement module is
introduced to extract rotation-invariant region features and
eliminate the misalignment between region features and objects.
And a rotation-aware set matching loss is used to ensure the
one-to-one matching process for direct set prediction without
duplicate predictions. Our method considerably simplifies the
overall pipeline and presents a new AOOD paradigm. Compre-
hensive experiments on several challenging datasets show that
our method achieves superior performance on the AOOD task.

Index Terms— Oriented object detection, detection trans-
former, oriented proposals, feature refinement.

I. INTRODUCTION

ARBITRARY-ORIENTED object detection (AOOD) is
a recently-emerged challenging problem in computer

vision, which plays an important role in the field of aerial
images [1], [2], smart retail [3], and scene text [4]. Unlike
generic object detection in nature images, oriented object
detection has fundamental difficulties, including often dis-
tributed with arbitrary orientation, densely packed, or has
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highly complex backgrounds. Many recent oriented detection
models have employed convolutional neural networks (CNNs)
to achieve promising results. These methods could be roughly
categorized into two types: anchor-based methods [1], [5],
[6], [7] and anchor-free methods [2], [8]. The anchor-based
methods need to design the size and preset angle of the anchors
manually. For instance, Ma et al. [4] introduce a rotation region
proposal network to generate rotated proposals, which places
54 anchors with different angles, scales and aspect ratios.
However, abundant anchors cause redundant computation and
memory load. To address this issue, RoI Transformer [9] learns
spatial transformations from horizontal Region of Interests
(HRoIs) to rotated RoIs (RRoIs), as shown in Fig. 1a. Oriented
R-CNN [10] generates oriented proposals by directly learning
midpoint offset representation. Meanwhile, R3Det [7] as a
one-stage approach generates oriented proposals directly and
uses a feature refinement module to realize feature recon-
struction and alignment, as shown in Fig. 1b. Nevertheless,
these methods still require manual preset boxes and complex
hyperparameters to achieve promising results. Therefore, sev-
eral anchor-free methods [2], [8], [11], [12], [13] are proposed
in the AOOD task. For example, CFA [2] models the object
layout as a convex-hull, then refines the predicted convex-hull
and makes it adapt to densely packed objects, which consists
of two stages: convex-hull generation and adaptation. The
anchor-free methods directly treat grid points in the feature
map as object candidates and largely simplify the detection
pipeline.

However, both rotated box candidates and point candi-
dates have a common problem: each object will produce
redundant and approximately duplicate predictions. In addi-
tion, it is necessary to carry out complicated hand-designed
processing steps and inductive biases, e.g., anchor generation,
anchor transformation, and non-maximum suppression (NMS)
reasoning. Recently, transformer-based detectors [14], [15],
[16], [17] have been promoted as being dynamic, atten-
tive, and can directly output predictions without complicated
hand-designed processing steps and inductive biases. Set-to-
set encoder-decoder models have emerged as a competitive
way to model generic object detection. The self-attention
and cross-attention operations in transformers are designed to
be permutation-invariant. They can enable adaptive receptive
fields for oriented objects, making them a natural candi-
date for processing rotated and irregularly placed objects.
Motivated by this observation, we ask the following ques-
tion: can we leverage transformers to learn an oriented
object detector without relying on hand-designed inductive
biases?
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Fig. 1. Comparisons of different oriented object detection pipelines. (a) In two-stage detectors, a small set of N candidates are selected from dense object
candidates by rotated region proposal networks (RRPN), and then extract image features with corresponding regions by rotated roi pooling operation, e.g.
RoI Transformer [9]. (b) In single-stage detectors, H × W × k candidates enumerate on all image grids, e.g. R3Det [7]. (c) The proposed transformer-based
oriented object detector: AO2-DETR, directly outputs the predicted oriented boxes, without prior boxes or complex pre/post-processing steps.

Intuitively, directly extending the transformer-based detec-
tors into the AOOD task by only adding additional
angle prediction values will suffer from several issues:
(1) Misalignment: the learned positional embeddings in the
transformer-based detectors are horizontal. When they are
decoded with the feed-forward network (FFN), it will typically
lead to misalignment between region features and rotated
objects. (2) Cluttered features: due to the various orienta-
tion and dense distribution of objects in aerial images, the
learned horizontal proposals (object queries) may contain more
background areas or multiple objects, resulting in cluttered
extracted features. (3) Limited matching: the regular opera-
tions in transformer-based detectors have limited generaliza-
tion to rotation and scale variations. Due to the highly diverse
directions of objects, it is often intractable to acquire accurate
matching with all objects by using object queries with the
horizontal direction.

In this paper, we aim to alleviate the above issues for
the challenging transformer-based oriented detection prob-
lem. We propose a transformer-based arbitrary-oriented object
detection framework called AO2-DETR (see Fig. 1c). The pro-
posed framework has three dedicated components to address
oriented object detection settings: an oriented proposal gener-
ation (OPG) mechanism, an adaptive oriented proposal refine-
ment (OPR) module, and a rotation-aware set matching loss.
Specifically, for the problem of misalignment and cluttered
features, we explore a novel oriented proposal generation
mechanism for generating oriented region proposals as object
queries, which are fed into the decoder as initial rotated
boxes for adaptive oriented proposal refinement. The oriented
proposals present a novel query formulation and provide a
better positional prior for pooling features by predicting the
orientation of each bounding box in addition to center and size.
Next, we present the adaptive oriented proposal refinement
module to alleviate the misalignment between the axis-aligned
features and the arbitrary oriented objects. The initial position
information is encoded by feature interpolation, and then
the learned oriented proposals are adaptively adjusted by
the refinement convolutional network. Consequently, for the
problem of limited matching, we introduce a rotation-aware
set matching loss, which allows AO2-DETR to infer the ori-
ented bounding boxes directly without prior boxes or complex
pre/post-processing steps.

In conclusion, the main contributions of this paper can be
summarized as follows:

• We propose a transformer-based arbitrary-oriented object
detector AO2-DETR, which eliminates the need for
multiple anchors and complex pre/post-processing.
We hope that our method can open up the possibil-
ity of developing various paradigms for the AOOD
task.

• We design an oriented proposal generation (OPG) mech-
anism, which guides the network to generate oriented
proposals with direction information. The oriented pro-
posals can be used to solve the misalignment problem
and provide a better positional prior for pooling features
to modulate the cross-attention.

• We introduce a novel adaptive oriented proposal refine-
ment (OPR) module into the transformer architecture. The
OPR module dynamically adjusts the oriented proposals
according to the learned context information by a feature
alignment module and a larger receptive field, which
can significantly reduce the gap between the oriented
proposals and the ground-truth. In addition, we add a
rotation-aware set matching loss in the one-to-one match-
ing process to ensure the correct match between the
predicted boxes and ground truth.

• The extensive experiments on four public datasets:
DOTA-v1.0 [18], DOTA-v1.5 [18], SKU110K-R [19],
and HRSC2016 [20] demonstrate the effectiveness of
the proposed model. AO2-DETR achieves the state-of-
the-art performance among anchor-free and single-stage
methods on these four datasets. Our code will be released
at https://github.com/Ixiaohuihuihui/AO2-DETR.

II. RELATED WORKS

A. Anchors in Oriented Object Detection

Oriented object detection is a well-studied research area.
The existing CNN-based oriented object detectors can be
divided into two categories: anchor boxes [1], [4], [6], [7],
[21] and dense points [2], [8], [11], [22], [23]. A classical
solution for the AOOD task is to set rotated anchors [4],
[24], such as rotated RPN [4], in which the anchors with
different angles, scales, and aspect ratios are placed on
each location. These densely rotated anchors lead to exten-
sive computations and memory costs. To address this issue,
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RoI-Trans [9] models the geometry transformation and solves
the problem of misalignment between Region of Interests
(RoIs) and objects. Oriented R-CNN [10] designs an oriented
RPN to generate oriented proposals directly. Some methods
are devoted to improving object representations. Yang and
Yan [25] propose CSL to address the boundary problem by
transforming angular prediction from a regression problem to
a classification task. Gliding Vertex [26] glides the vertex of
the horizontal bounding box on each corresponding side to
accurately describe a multi-oriented object instead of directly
regressing the four vertices. These well-designed methods
have shown promising performance. However, it still produces
many rotated anchors and redundant detection boxes.

Meanwhile, the keypoint-based AOOD methods have
attracted extensive academic attention. These approaches gen-
erate the oriented bounding boxes by a set of keypoints belong-
ing to the objects. DARDet [8] proposes a dense anchor-free
rotated object detector and an alignment convolution module
to extract aligned features. FCOSR [11] develops an ellipse
center sampling method for oriented bounding boxes to define
the sampling region. CFA [2] presents the convex-hull rep-
resentation to learn the irregular shapes and layouts, which
intend to alleviate the feature aliasing. Generally, these meth-
ods require excessive modifications to horizontal anchor-free
detectors, which are prone to feature misalignment problems.

To achieve better detection accuracy, many detectors [5],
[7], [10], [27], [28], [29] usually tend to design different
feature refinement module. References [27], [28], and [29]
are proposed for generic object detection and often lose their
performance when detecting objects that are oriented and
densely packed in aerial images. And the existing refinement
modules [5], [7], [10] operate on the preset anchor boxes, and
then classify and refine the anchor boxes.

As the hand-craft anchor boxes need to be carefully tuned
to achieve good performance, while our method tends not to
use the anchor boxes. Unlike the above methods, we directly
predict the absolute position of each object in the image and
remove the need for manual preset boxes and complicated
hand-designed components.

B. Label Assignment Strategy for Oriented Object Detection

The label assignment is a core issue that mainly seeks
to define positive/negative training samples independently for
each ground-truth object. Anchor-based detectors [1], [30]
usually adopt IoU as the assigning criterion. For instance,
RPN in Faster R-CNN uses 0.7 and 0.3 as the positive
and negative thresholds, respectively. This strategy introduces
many hyperparameters that depend on the datasets. It means
that one needs to spend much effort adjusting the hyperpa-
rameters when the dataset is changed. While the anchor-free
detectors directly assign anchor points around the center of
objects as positive samples or view each object as a single
or a set of keypoints. GGHL [31] proposes a Gaussian OLA
strategy to reflect the shape and direction of the object and
refine the positive candidate locations. CFA [2] categorizes
convex-hulls into positives or negatives according to the CIoU
between the convex-hulls and the ground-truth boxes. The

remarkable property of non-end-to-end detectors is a one-to-
many positive sample assignment. During the training stage,
for a ground-truth box, any samples whose confidence thresh-
old is higher than the preset threshold are assigned as the
positive samples. It always results in multiple samples in the
feature maps being selected as positive samples. As a result,
these detectors produce redundant predictions in the inference
stage.

On the contrary, transformer-based detectors apply one-to-
one assignments during the training stage [32]. Our method
follows this assignment strategy. For one ground-truth box,
only one sample with the minimum matching cost is assigned
as the positive sample, and the others are all negative samples.
The positive sample is usually selected by bipartite matching
to avoid sample conflict. In order to apply the bipartite match-
ing loss in AOOD, we introduce a rotation-aware matching
loss to ensure that the entire label assignment process is
one-to-one.

C. Transformer Network and Its Application

The transformer is firstly proposed for sequence trans-
duction in [14]. The core mechanism of transformer
is self-attention which makes it particularly suitable for
long-range modeling information contained in all the input
tokens. Recently, Carion et al. [15] present the DETR, which
is the first method with an end-to-end optimization objective
for set prediction. The series of related works [16], [17],
[33], [34], [35] prove that transformers could achieve state-
of-the-art performance in image classification and detection.
Deformable DETR [16] is proposed to combine with sampling
deformable points of value to the query and uses multi-
ple level features to solve the slowly converging speed of
the transformer detector. In Anchor DETR [17], the object
queries are based on the anchor points, while Conditional
DETR [33] encodes the reference point as the query position
embedding.

Transformers are well suited for operating on the points
since they are naturally permutation invariant and can enable
adaptive receptive fields for oriented objects. We have
been inspired to explore the encoder-decoder paradigm for
the AOOD task. The self-attention is effective for global-
dependency modeling, and it is likely to be valuable for rigid
rotating and arbitrary placed objects. Our work is inspired by
the recent Deformable DETR and anchor DETR for object
detection. Different from them, the proposed AO2-DETR is
an arbitrary-oriented end-to-end transformer-based detector,
which can be trained from scratch and has significant design
differences such as oriented proposal and adaptive refinement
module. Overall, the proposed novel designs offer more flexi-
bility with broad context modeling and fewer inductive biases
for the AOOD task.

III. METHOD

A. Overview

The framework of the proposed method is shown in Fig. 2,
which is mainly composed of six components: (1) a CNN
backbone, (2) a deformable encoder, (3) an oriented proposal
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Fig. 2. Illustration of our proposed framework. AO2-DETR adapts the standard Deformable DETR for the AOOD task by introducing: (i) an oriented
proposal generation mechanism to generate oriented proposals as object queries, which provides a better positional prior for pooling features. (ii) an adaptive
oriented proposal refinement module to adjust the oriented proposals according to the learned context information, and (iii) a rotation-aware set matching loss
to ensure the one-to-one matching process in AO2-DETR. The feed-forward network predicts either a detection (class and bounding box) or a “no object”
class.

generation mechanism to generate oriented region propos-
als, (4) an adaptive oriented proposal refinement module to
reconstruct the feature map and refine the oriented proposals
adaptively, (5) a deformable decoder, (6) and a rotation-aware
set matching loss to ensure the correct one-to-one matching
process.

AO2-DETR takes an image as input and predicts the
positions of objects in the form of oriented bounding boxes
(x, y, w, h, θ) (denoted by OpenCV representation). Given an
image, a CNN backbone is firstly used to extract a compact
multi-scale feature map. The image features from the CNN
backbone are passed through the transformer encoder, together
with spatial position encoding that are added to queries and
keys at every multi-scale deformable attention module.

Then, the oriented proposal generation mechanism receives
the encoder memory to generate oriented region proposals.
With these oriented region proposals, we can mitigate the
problem of misalignment and cluttered features, thus providing
a better positional prior for pooling features to modulate the
cross-attention. To extract rotation-invariant region features
and eliminate the misalignment between region features and
oriented proposals, an adaptive oriented proposal refinement
module is proposed to reconstruct feature map and refine the
initial oriented proposals. The blue line in Fig. 2 denotes the
refined data flow. Next, we select the top-k scores refined
oriented proposals as object queries, which will be fed into
the deformable decoder as object queries.

Consequently, the top-k object queries are transformed
into output embeddings by the deformable decoder through
multiple multi-head self-attention and multi-scale deformable
attention modules. They are then independently decoded into
box coordinates and class labels by an FFN, we can obtain
the final set of predictions (class and bounding box) or a
“no object” class. And the rotation-aware matching loss is
proposed to ensure the correct one-to-one matching in the
training phase.

B. Backbone and Transformer Encoder

Starting from the initial image ximg ∈ R
3×H0×W0 (with

3 color channels), a conventional CNN backbone generates

multi-scale feature maps
{
xl

}L
l=1 (L = 4) at different reso-

lutions from the output feature maps of stage C3 − C5. The
input of encoder is multi-scale feature maps

{
xl

}L−1
l=1 (L = 4)

which are extracted from the output feature maps of stages
C3 through C5 in ResNet (transformed by a 1 × 1 convo-
lution with stride 1) and positional embeddings. The lowest
resolution feature map x L is obtained via a 3 × 3 convolution
with stride 2 on the final C5 stage, denoted as C6. All the
multi-scale feature maps are of 256 channels.

The transformer encoder is employed to model the dis-
criminative contextual information among all the pixel levels.
The key and query elements are pixels from the multi-scale
feature maps. For each query pixel, the reference point is
itself. To identify the feature level of each query pixel and
the positional embedding, we add a scale-level embedding
to the feature representation. Unlike the positional embed-
ding with fixed encodings, the scale-level embeddings are
randomly initialized and jointly trained with the network.
Each encoder layer has a standard architecture consisting of a
multi-scale deformable attention module and a fully connected
FFN.

C. Oriented Proposals Generation Mechanism

In the original DETR, object queries in the decoder are
irrelevant to the current image. The object queries are a set of
learned embeddings. However, each learned embedding does
not have an explicit physical meaning, and we can not explain
where it will focus on, which is the reason for its slow training
convergence. To address this issue, Deformable DETR made
some improvements by generating region proposals in the first
stage and then providing them into the decoder as object
queries in the second stage. However, due to the highly diverse
directions of objects in the aerial images, it is intractable to
acquire accurate object area by using these horizontal region
proposals as object queries. As a result, it usually turns out
to be difficult to train a detector for extracting object features
and identifying the accurate localization. To address this issue,
a novel oriented proposal generation (OPG) mechanism is
proposed to produce more accurate oriented proposals by
learning the angle of each proposal in addition to the center
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Fig. 3. Illustration of adaptive oriented proposal refinement (OPR) mecha-
nism. It mainly contains two parts: a three-way convolutional layer and feature
alignment module.

and size. The generated oriented proposals will be served
as object queries in the deformable decoder, which provide
a better positional prior for pooling features to modulate
the cross-attention, as shown in Fig. 2. Specifically, let i
index a pixel from feature level li ∈ {1, 2, . . . , L} with
normalized coordinates

(
pix , piy

) ∈ [0, 1]2, an initial rotated
box is firstly generated as pi = (pix , piy, piw, pih , piθ ). Then
we use the prediction results �ri obtained from the image
features encoded by the deformable encoder and the initial
rotated box pi to obtain the final oriented proposal b̂i for
each pixel i . Here, b̂i j = (

xi j , yi j
)

denotes the four vertices
of b̂i , j ∈ {1, 2, 3, 4}, xi j and yi j represents the x and y
coordinates of point b̂i j , respectively. Then, b̂i j is formulated
as:

b̂i j = (σ
(
σ−1 (

φx j (pi)
) + φx j (�ri )

)
,

σ
(
σ−1 (

φy j (pi)
) + φy j (�ri )

)
), (1)

φx j (pi) = pix + 1

2

(
cos(piθ ) × cos

(⌊
j − 1

2

⌋
π

)
× piw

− sin(piθ ) × cos

(⌈
j + 1

2

⌉
π

)
× pih

)
, (2)

φy j (pi) = piy + 1

2

(
sin(piθ ) × cos

(⌊
j − 1

2

⌋
π

)
× piw

+ cos(piθ ) × cos

(⌈
j + 1

2

⌉
π

)
× pih

)
, (3)

where piw and pih are both set as 2li −1s, s = 0.05, piθ

is set as 0. φx j (pi ) and φy j (pi) represent the calculation
process of the four vertices of pi . Here, �ri{x,y,w,h,θ} ∈ R

are predicted by the bounding box regression branch. The
calculation process of φx j (�ri ) and φy j (�ri ) are the same
as φx j (pi) and φy j (pi ), respectively. And σ and σ−1 denote
the sigmoid and the inverse sigmoid function, respectively.
The usage of σ and σ−1 is to ensure b̂i j is of normalized
coordinates, as b̂i j ∈ [0, 1].

D. Adaptive Oriented Proposal Refinement Module

Many objects in aerial images are usually distributed with
large-scale variations and arbitrary orientations. The convo-
lution features are usually axis-aligned with the fixed recep-
tive field, which will lead to the misalignment between the

Fig. 4. (a): Left: pRF size as a function of eccentricity in some human
retinotopic maps, the pRF size increases with eccentricity in each map. Right:
The spatial array of the pRFs is based on the parameters in the left panel. The
radius of each circle is the apparent RF size at the appropriate eccentricity.
Reproduced from [36]. (b): The final spatial array of receptive field, which is
similar to the spatial array of pRF in hV4.

extracted convolution features and oriented objects and will
affect the final detection performance. Therefore, it is crucial
to extract rotation-invariant region features and eliminate the
misalignment between region features and objects, especially
for dense regions. We introduce the oriented proposal refine-
ment (OPR) module to align the convolutional features and
oriented proposals. The difference between the proposed OPR
module and the previous methods is that the OPR module
can be applied to transformer-based detectors and does not
require pre-defined anchor boxes and prior knowledge related
to dataset.

The structure of the OPR module is shown in Fig. 3. The
inputs are the multi-scale feature map of the backbone and the
initial oriented proposal of the deformable encoder. The output
is a refined feature map. To effectively excavate the contextual
information, we use the relevant knowledge of the human
visual perception system [36], as illustrated in Fig. 4. The
human visual perception cortex can highlight the importance
of the region nearer to the center and elevate the insensitivity
to small spatial shifts. We construct the receptive field block
module by combining multiple branches with different kernels
and dilated convolution layers to simulate the ratio between the
size and eccentricity of the population receptive field. To be
specific, the feature map is added by three-way convolution
(conv 1×1, conv 5×1, and conv 7×1) to obtain a large kernel
receptive fields. Here, F ∈ R

C×1×1 represents the feature
vector of the point on the feature map. The whole process
can be expressed as follows:

Xout = τ (Br1 ⊕ ε(Br1 � Br2 � Br3)) , (4)

where Xout represents the output feature, Br1, Br2, and
Br3 denote the output of the three branches “conv 1 × 1”,
“conv 1 × 5”, and “conv 1 × 7”, respectively. Here, ⊕
represents the operation of feature addition, � represents
the operation of feature concatenation, ε denotes the process
of adjusting the number of channels through 1 × 1 con-
volution, τ is the activation function of ReLU. After the
above steps, the OPR module can highlight the relationship
between the size and eccentricity of different receptive fields,
and force the network to learn discriminative information.
Then the new feature map is sent into the feature alignment
module.
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Fig. 5. Illustration of feature alignment module. We aim to re-encode the
position information of the initial bounding box (blue rectangle) to the refined
bounding box (red rectangle). Purple numbers are simple examples of feature
points. We adopt the bilinear feature interpolation method as R3Det [7].

The process of feature alignment is shown in Fig. 5.
We extend the feature alignment module in [7] into our
method. The inputs of this module are the feature map Xout

and the oriented proposals b̂i (in Equation 1). Specifically,
we re-encode the position information of the initial oriented
proposal (blue rectangle) to the corresponding feature points
(red point), thereby reconstructing the entire feature map by a
pixel-wise manner to achieve the alignment of the features.
We also adopt the bilinear feature interpolation to obtain
the feature information corresponding to the initial oriented
proposals. The formulation of feature interpolation is as
follows:

F = Xout ,

F ′ = Flt ∗ Arb + Frt ∗ Alb + Frb ∗ Alt + Flb ∗ Art , (5)

where A{lt,rt,lb,rb} denotes the Area{lt,rt,lb,rb} and F{lt,rt,lb,rb}
denotes corresponding feature vectors on the feature map Xout ,
they are computed according to the coordinates of the oriented
proposals b̂i , as shown in Fig. 5(a). A more accurate feature
vector is obtained by bilinear interpolation. After traversing the
feature points, we can obtain the reconstructed feature map F ′.
Then, the reconstructed feature map F ′ is added to the original
feature map Xout to get the final refined feature map. The
OPR module can capture the arbitrary geometric structure of
an oriented proposal and its surrounding context information,
which is essential for reducing the misalignment between
the predicted oriented proposals and the ground truth one.
The reconstructed feature map will be sent to the deformable
encoder and OPG module to generate refined oriented pro-
posals. This process is represented by the blue line in Fig. 2.
Finally, the top-k scores refined oriented proposals will be
selected as object queries, where the positional embeddings
of object queries are set as positional embeddings of oriented
proposal coordinates. Then these object queries are sent into
the deformable decoder to output the final set of predictions
in parallel.

E. Deformable Transformer Decoder

There are cross-attention and self-attention modules in the
decoder. In the cross-attention modules, object queries extract

Fig. 6. Illustration of the deformable decoder of the proposed method
AO2-DETR. Given the encoder memory and top-k scoring proposals, we per-
form the deformable cross-attention operation at each reference proposal in
the decoder. The object queries are updated layer-by-layer to gradually get
close to the ground-truth objects, which provides a better positional prior for
pooling features to modulate the cross-attention. The blue line denotes the
refined information flow of the OPR module. The green line indicates the
information flow of reference proposals.

features from the feature maps, where the key elements are
of the output feature maps from the OPR module. Follow-
ing [16], we only replace each cross-attention module to be
the multi-scale deformable attention module. The deformable
decoder is performed across multi-scale feature maps, encod-
ing richer context over a larger receptive field and enabling
the network to learn oriented receptive fields. Thus, we can
enable the network to handle object detection with small
objects and variable orientations. The output embeddings of
the deformable decoder will then be fed into two branches:
bounding box regression and classification. The classification
Fcls is a single layer FFN, while the regression branch Freg

is a 3-layer FFN. Consequently, the model globally reasons
about all objects and is able to use the whole image as
context.

Unlike the original deformable attention module in the
decoder of Deformable DETR, the multi-scale deformable
attention module in the proposed method attends to a small
fixed number of key sampling points around an oriented region
proposal, rather than the horizontal proposal. The deformable
decoder of our method is shown in Fig. 6. Let ĉq be the
oriented region proposal for each query element q . Then the
multi-scale deformable attention module is applied as:

MSDeformAttn

(
zq , ĉq ,

{
xl

}L

l=1

)

=
M∑

m=1

Wm

[
L∑

l=1

K∑
k=1

Amlqk · W ′
m xl (

fl
(
ĉq

) + � pmlqk
)]

,

(6)

where m indices the attention head and K is the total number
of sampled keys, l indexes the input feature level. fl

(
ĉq

)
rescales the normalized coordinates ĉq to the input feature
map of the l-th level. �pmlqk and Amlqk denote the sampling
offset and attention weight of the kth sampling point in the
l th feature level and the mth attention head, respectively.
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Wm and W ′
m are the projection matrices for multi-head

attention. The initialization process for multi-scale deformable
attention is the same as the Deformable DETR. By using
the refined oriented proposals, the learned decoder attention
will have a strong correlation with the predicted bounding
boxes, which can avoid learning messy information, including
background or other objects, especially for densely placed
objects, and it can also accelerate the training convergence.

The detection head predicts the relative offsets, b̂q is the
predicted oriented boxes, the four vertices of b̂q which is
calculated by:

b̂q j = {σ
(
φx j

(
rq

) + φx j

(
σ−1 (

ĉq
)))

,

σ
(
φy j

(
rq

) + φy j

(
σ−1 (

ĉq
)))

}, (7)

where j ∈ {1, 2, 3, 4}, rq ∈ R are predicted by the detection
head. Then we express b̂q as {b̂qx , b̂qy, b̂qw, b̂qh, b̂qθ } by the
OpenCV representation of oriented bounding boxes. Crucially
there is no down-sampling in spatial resolution but global
context modeling at every layer of the transformer decoder,
thus offering an entirely new perspective to the oriented object
detection. The proposed method simultaneously predicts a set
of oriented boxes with no particular ordering.

In addition, inspired by the iterative refinement developed
in Deformable DETR, we also adopt a simple and effective
iterative bounding box refinement mechanism to improve
detection performance. Here, each decoder layer refines the
oriented bounding boxes according to the predictions from the
previous layer. Suppose there are D number of decoder layers
(e.g., D = 6), given a normalized oriented box b̂d−1

q predicted
by the (d − 1)th decoder layer, the dth decoder layer refines
the box as:

b̂d
q j = {σ

(
φx j

(
rd

q

)
+ φx j

(
σ−1

(
b̂d−1

q

)))
,

σ
(
φy j

(
rd

q

)
+ φy j

(
σ−1

(
b̂d−1

q

)))
}, (8)

where d ∈ {1, 2, . . . , D}, b̂d
q j is the j th vertex coordinates of

b̂q at the d-th decoder layer, rd
q ∈ R are predicted at the d-th

decoder layer. Prediction heads for different decoder layers do
not share parameters. In the iterative bounding box refinement
module, for the dth decoder layer, we sample key elements
respective to the box b̂d−1

q predicted from the (d−1)th decoder

layer. For Equation 6 in the cross-attention module of the
dth decoder layer, b̂d−1

q{x,y,w,h,θ} serves as the new reference
oriented proposal.

F. Set Matching and Loss Function

AO2-DETR infers a fixed-sized sequence of N predictions.
One of the main challenges is to score oriented predicted
objects with respect to the ground truth. To obtain the box
predictions, we apply a 3-layer FFN with ReLU activation
function and a linear projection layer to the output embeddings
of the deformable decoder. Let ŷ = {

ŷi
}N

i=1 denote the
predicted oriented boxes, and y the ground truth set of objects.
Assuming N is larger than the number of objects in the image,
we consider y also as a set of size N padded with ∅ (no object).

In order to find a bipartite graph matching between these two
sets, we search for a permutation of N elements σ ∈ On with
the lowest cost:

σ̂ = arg min
σ∈On

N∑
i

Lmatch
(
yi , ŷσ(i)

)
, (9)

where Lmatch
(
yi , ŷσ(i)

)
is a pair-wise matching cost between

ground truth yi and a prediction with index σ(i). The optimal
assignment can be computed efficiently by the Hungarian
algorithm [37].

The matching loss takes the class predictions and the simi-
larity of predicted and ground truth boxes into account. Each
element i of the ground truth set can be seen as yi = (ci , bi )
where ci is the target class label (which may be ∅) and
bi ∈ [0, 1]5 is a vector that defines ground truth box center
coordinates and its height, width relative to the image size
and angle. The long side is height, and the angle range is
[0, pi /2]. For the predictions with index σ(i), we denote the
probability of class ci as p̂σ(i) (ci ) and the predicted oriented
bounding box as b̂σ(i).

To ensure the correct match between the predicted oriented
boxes and ground truth, we add a rotation-aware set matching
loss Lriou in the one-to-one matching process. With the above
notation, we define the Lmatch as follows:

Lmatch(yi , ŷσ(i)) = λcls · − log p̂σ(i) (ci )

+ λL1 · Lbox

(
bi , b̂σ (i)

)
+ λriou · Lriou

(
bi , b̂σ (i)

)
, (10)

where ci �= ∅. The second and third parts of the matching
cost are used to score the bounding boxes. For Lbox, we use
a linear combination of the SmoothL1 Loss. Here, λcls and
λL1 are the weights of Focal and SmoothL1 set matching
loss, respectively. For the rotation-aware loss Lriou , we just
simply extended the rotated iou loss [38] into the Hungarian
matching loss. We first compute the coordinates of four
vertices bi = {(x1, y1), (x2, y2), (x3, y3), (x4, y4)}, b̂σ(i) =
{(x ′

1, y ′
1), (x ′

2, y ′
2), (x ′

3, y ′
3), (x ′

4, y ′
4)}, the computation process

is formulated as:
Areabi = a × b,

Areab̂σ(i)
= a′ × b′,

a =
√

(x2 − x1)
2 + (y2 − y1)

2,

b =
√

(x2 − x3)
2 + (y2 − y3)

2,

a′ =
√(

x ′
2 − x ′

1

)2 + (
y ′

2 − y ′
1

)2
,

b′ =
√(

x ′
2 − x ′

3

)2 + (
y ′

2 − y ′
3

)2
, (11)

then determine the vertices of overlap area if they have,
and sort these polygon vertices in anticlockwise order to
compute the intersection area Area overlap = max

(
x2, x ′

2

) −
min

(
x1, x ′

1

)×(
max

(
y1, y ′

1

) − min
(
y2, y ′

2

))
, the Lriou is com-

puted as:
IoU = Area overlap

Area bi + Area b̂σ(i)
− Area overlap

,
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Lriou = 1 − IoU , (12)

where λriou is the weight rotated iou set matching loss.
These losses are normalized by the number of objects inside
the batch, which helps our model to avoid complex post-
processing steps.

Loss Function: L1 loss is used as the regression loss.
Rotated IoU loss [38] is used for the IoU loss computation
of two rotated 2D boxes and Focal loss for the classification
loss.

IV. EXPERIMENTS

A. Datasets

To demonstrate the effectiveness for the proposed
method, we conduct experiments on four oriented datasets,
DOTA-v1.0 [18], DOTA-v1.5 [18], SKU110K-R [3], and
HRSC2016 [20] datasets.

DOTA is one of the largest dataset for oriented object detec-
tion with two released versions: DOTA-v1.0 and DOTA-v1.5.
DOTA-v1.0 contains 2,806 large aerial images, and the image
size ranges from around 800 × 800 to 4000 × 4000 and
188, 282 instances among 15 common categories: Plane (PL),
Baseball diamond (BD), Bridge (BR), Ground track field
(GTF), Small vehicle (SV), Large vehicle (LV), Ship (SH),
Tennis court (TC), Basketball court (BC), Storage tank (ST),
Soccer-ball field (SBF), Roundabout (RA), Harbor (HA),
Swimming pool (SP), and Helicopter (HC). DOTA-v1.5 is
released with a new category, Container Crane (CC). It con-
tains 402,089 annotated object instances within 16 categories.

We use both training and validation sets for training, the test
set for testing. We crop the images into 1024 × 1024 patches
with a stride of 824. The random horizontal flipping is adopted
to avoid over-fitting during training and no other tricks are
utilized. For fair comparisons with other methods, we adopt
data augmentation at three scales {0.5, 1.0, 1.5} and random
rotation from 5 angles {30◦, 60◦, 90◦, 120◦, 150◦}. The per-
formance of the test set is evaluated on the official DOTA
evaluation server.1

SKU110K-R is a challenging dataset for commodity detec-
tion. It is an extended version of SKU-110K [19]. The
images are collected from supermarket stores around the
world and include scale variations, viewing angles, light-
ing conditions, noise levels, and other sources of vari-
ability. The original SKU-110K dataset contains 11,762
images in total (8,233 for training, 588 for validation,
and 2,941 for testing). The SKU110K-R dataset performs
data augmentation by rotating the image 6 different angles
{−45◦,−30◦,−15◦, 15◦, 30◦, 45◦} on the original dataset.
After the augmentation, the number of training, validation,
and testing images are 57,533, 4,116, and 20,587, respectively.
Each image contains an average of 154 tightly packed objects,
up to 718 objects. The image size ranges from 1840×1840 to
4320 × 4320. We resize the input image to 800 × 800 and
apply random rotation as DOTA dataset. For the SKU110K-R
dataset, the results follow standard COCO-style Average

1https://captain-whu.github.io/DOTA

Precision (AP) metrics that include AP75 (IoU = 0.75), mAP
and AR300.

HRSC2016 contains images of ships at the wharf, which
are collected from six famous harbors. It only contains one
category “ship”. The image size ranges from 300 × 300 to
1500 × 900. The HRSC2016 dataset contains 1061 images in
total (436 for training, 181 for validation, and 444 for testing).
We use both training and validation sets for training and the
test set for testing. Random horizontal flipping is applied
during training. For the detection accuracy on the HRSC2016,
we adopt the mean average precision (mAP) as evaluation
criteria, which is consistent with PASCAL VOC2007 and
VOC2012.

B. Implementation Details

We implement the proposed method AO2-DETR on
MMRotate [43]. In all experiments, we adopt Deformable
DETR [16] with ResNet-50 backbone (pre-trained on Ima-
geNet [44]) as the baseline method. Multi-scale feature maps
are extracted from conv3 to conv5 of ResNet-50. The trans-
former encoder-decoder follows the same architecture as in
Deformable DETR. The number of object queries is set to
300. We train the network with AdamW [45] for 50 epochs.
In the first 40 epochs, the learning rate is 1e − 4 and then
1e − 5 for another 10 epochs. The momentum and weight
decay are 0.9 and 0.0001, respectively. Our method is trained
on 3 GeForce RTX 3090 GPUs with a total batch size of 4 for
training and a single 3090 GPU for inference. The loss weight
λcls, λL1 and λriou are set as 5, 5, and 8, respectively. In the
inference stage, we follow the same scale setting as training.
No post-processing is needed for associating objects.

C. State-of-the-Art Comparison

We compare AO2-DETR against some state-of-the-art meth-
ods on the different oriented datasets, the results are shown in
Table I, II, III, and IV.

1) Results on DOTA-v1.0: Table I shows a comparison of
our AO2-DETR with the recently state-of-the-art detectors on
the DOTA-v1.0 dataset with respect to oriented bounding box
detection. For the accuracy measured by mAP, we achieve
77.73% mAP with single-scale data and 79.22% mAP with
multi-scale data. Using the same backbone of ResNet50,
AO2-DETR achieves the best result among two-stage, single-
stage, and anchor-free methods (e.g., Oriented R-CNN [10],
R3Det [7], KLD [39], CFA [2], SASM [42], and DARDet [8])
using a single model without bells and whistles. Specifi-
cally, AO2-DETR outperforms Oriented R-CNN by 1.86%
(77.73% vs 75.87%, single-scale), R3Det by 1.26% (77.73%
vs 76.47%), KLD by 0.9% (79.22% vs 78.32%), CFA by
4.17% (79.22% vs 75.05%), SASM by 2.03% (79.22% vs
77.19%), and DARDet by 0.48% (79.22% vs 78.74%), which
is a large margin.

Compared with the anchor-based methods, our method
is better than most two-stage methods, except for the best
two-stage method Oriented R-CNN [10] with multi-scale
data. We argue that the superior performance of Oriented
R-CNN comes from the oriented region proposal network
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TABLE I

COMPARISONS WITH STATE-OF-THE-ART METHODS ON DOTA-V1.0 OBB TASK. ∗ INDICATES MULTI-SCALE TRAINING AND TESTING. THE RESULTS
WITH RED AND BLUE COLORS INDICATE THE BEST AND SECOND-BEST RESULTS OF EACH COLUMN, RESPECTIVELY

TABLE II

PERFORMANCE COMPARISONS ON DOTA-V1.5 TEST SET. ∗ INDICATES MULTI-SCALE TRAINING AND TESTING. THE RESULTS

WITH RED AND BLUE COLORS INDICATE THE BEST AND SECOND-BEST RESULTS OF EACH COLUMN, RESPECTIVELY

TABLE III

EVALUATION RESULTS ON SKU110K-R USING THE COCO-STYLE

METRIC. THE RESULTS WITH RED AND BLUE COLORS INDICATE

THE BEST AND SECOND-BEST RESULTS, RESPECTIVELY

and a midpoint offset representation to represent oriented
objects. Different from existing methods, we aim to design
a conceptually simple and a new paradigm framework for
the AOOD task. It does not require hand-designed com-
ponents, complex pre/post-processing steps and inductive
biases.

2) Results on DOTA-v1.5: Compared with DOTA-v1.0,
DOTA-v1.5 contains more extremely small objects. We sum-
marize the results on DOTA-v1.5 in Table II. Compared
to state-of-the-art methods, AO2-DETR can achieve 66.26%
mAP with single-scale data and 75.89% mAP with multi-
scale data, outperforms RetinaNet OBB [46], Faster R-CNN

TABLE IV

EVALUATION RESULTS ON HRSC2016. � INDICATES VOC2012
METRICS, WHILE OTHER METHODS ARE EVALUATED UNDER

VOC2007 METRICS. † INDICATES THAT THE RE-IMPLEMENTATION
BY USING RESNET50 AS THE BACKBONE. THE RESULTS WITH

RED AND BLUE COLORS INDICATE THE BEST AND SECOND-
BEST RESULTS, RESPECTIVELY

OBB [18], Mask R-CNN OBB [47], and HTC [48] by a large
margin. These experiments validate that an encoder-decoder
detection model based on the standard Transformer can also
achieve good results in small object detection, on the basis of
not using FPN.

3) Results on SKU110K-R: The comparison results on
SKU110K-R are shown in Table III. AO2-DETR achieves
58.0% AP and improves the state-of-the-art anchor-free meth-
ods by 1.0% (58.0% vs 57.0%). We also report the results
of AP75 and AR300. Most of the images in this dataset are
taken with handheld cameras, the commodity is placed in a
messy way, and the angle changes are relatively large. The
results on the SKU110K-R dataset show that our method
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TABLE V

ABLATION STUDIES OF PROPOSED MODULES IN AO2-DETR. DOTA-V1.0 IS USED IN THIS EXPERIMENT. “RAL” MEANS THE
ROTATION-AWARE SET MATCHING LOSS. THE BOLD RESULTS INDICATE THE BEST PERFORMANCE

TABLE VI

SPEED VERSUS ACCURACY ON THE DOTA-V1.0 AND HRSC2016
DATASETS. WE ADOPT THE MAP AS THE METRIC OF SKU110K-R,

VOC2012 AS THE METRIC OF HRSC2016. THE RESULTS
WITH RED AND BLUE COLORS INDICATE THE BEST AND

SECOND-BEST RESULTS OF EACH COLUMN, RESPECTIVELY

has strong applicability to this scenario and expands the use
of the transformer-based method in the field of intelligent
supermarkets.

4) Results on HRSC2016: The HRSC2016 dataset only
contains one category “ship”, which some of them have
large aspect ratios and various orientations. The results are
shown in Table IV. It can be seen that our AO2-DETR
achieves competitive performance consistently, without the use
of a more complicated architecture. Specifically, AO2-DETR
achieves 88.12% and 97.47% under PASCAL VOC 2007 and
VOC 2012 metrics, respectively.

5) Speed ersus Accuracy: Under the same setting, we com-
pare the inference speed of different methods on the
DOTA-v1.0 and HRSC2016 datasets, shown in Table VI. All
methods adopt ResNet50 as the backbone and are implemented
on the MMRotate [43]. The hardware platform of testing is a
GeForce RTX 3090 with a batch size of 1. We adopt single-
scale training and testing in this experiment. As shown in
Table VI, our method has higher detection accuracy than other
methods on the DOTA-v1.0 dataset. Although the performance
of our method is slightly lower than ReDet [1] on the
HRSC2016 dataset, the proposed method has a faster running
speed. The speed of AO2-DETR is almost close to anchor-free
detectors, which shows the effectiveness of our method in the
inference stage.

D. Ablation Studies

In this section, we conduct a series of ablation experiments
on the DOTA-v1.0 test set, SKU110K-R, and HRSC2016
datasets to evaluate the effectiveness of our proposed method.
To detect oriented objects, we improve the Deformable
DETR by adding the predicted value of the angle and term
the detector “Deformable-O”. Table V shows the impact
of progressively integrating the proposed components into

TABLE VII

ABLATION STUDIES OF PROPOSED MODULES IN AO2-DETR.
SKU110K-R AND HRSC2016 DATASETS ARE

USED IN THIS EXPERIMENT

the baseline framework for the transformer-based AOOD
methods.

1) Oriented Proposal Generation Mechanism: To explore
the contribution of the oriented proposals generation (OPG)
mechanism, we derive two settings: with/without oriented pro-
posals generation. The results in Table V and Table VII clearly
show that the oriented proposals generation is necessary for
boosting performance. On the three datasets, OPG improves
the performance by 5.4%, 4.3%, and 7.94%, respectively.
The significant performance improvement indicates that the
OPG mechanism can better locate objects and avoid the
extracted features from being interfered with by other objects
or backgrounds.

For a better understanding of the role of OPG mechanism,
we visualize the adaptation process of sampling points (pink
filled circle) and oriented proposals (green rectangle) of the
last layer in decoder from 20th , 40th, and 50th epoch, as shown
in Fig. 7. For readability, we combine the sampling points and
oriented proposals from feature maps of different resolutions
into one image. It can be seen that the sampling points of
the 20th epoch are still scattered, but the sampling points of
the 40th epoch are concentrated in the center of the objects.
At the 50th epoch, the sampling points and generated oriented
proposals can well cover the objects. In particular, these
green rectangles are only proposals. They will be selected
as object queries and sent to the deformable decoder layer
to generate the final predictions. The final detection results
are displayed in the last column. The visualization results
show that the proposed component OPG presents a robust
performance in both arbitrary orientation and densely packed
scenarios.

2) Adaptive Oriented Proposal Refinement Module: To
investigate the importance of the adaptive oriented proposal
refinement (OPR) module, we perform a study of models with
or without the OPR module. As shown in Table V, the pro-
posed oriented proposal refinement significantly improves per-
formance by 4.93% (76.23% vs 71.30%). In addition, we also
explore the importance of iterative bounding box refine-
ment (IBR) module. As shown in Table V, the performance
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TABLE VIII

ABLATION STUDIES OF SET MATCHING COST. DOTA-V1.0 IS USED IN THIS EXPERIMENT. THE BOLD RESULTS INDICATE THE
BEST PERFORMANCE. THE NUMBERS WITH BLUE COLOR INDICATES THE PERFORMANCE GAIN

Fig. 7. Visualization of oriented proposal generation (OPG) mechanism. The learned oriented proposals are generated by OPG on the DOTA dataset. The
top-300 proposals (green rectangle) per image are displayed. Each sampling point is marked as a pink filled circle. We can see that the sampling points are
concentrated on the object, which is the main focus of deformable attention module.

Fig. 8. Ablation results from adapting the number of queries on
DOTA-v1.0 and HRSC2016 datasets. We compare the mAP with varying
numbers of queries from 150 to 400.

of without iterative refinement module is reduced from 77.73%
to 76.23%, which shows that the iterative refinement module
can enhance the relationship between transformer decoder and
better model context information. Furthermore, we can see
that the performance gains of OPR and IBR are effective
in some categories, especially in the small vehicle (SV)

Fig. 9. Ablation results from adapting the number of queries on
DOTA-v1.0 and HRSC2016 datasets. We compare the FPS with varying
numbers of queries from 150 to 400.

(24.27%), ship (SH) (8.10%), basketball court (BC) (9.05%),
and storage tank (ST) (8.37%). Small vehicles and ships are
usually placed densely. And the color of basketball court and
storage tank is similar to the background. The background
information will interfere with object information, making
it difficult to distinguish boundaries. In addition, we also
conduct more experiments to investigate the impact of the
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Fig. 10. Qualitative results on DOTA-v1.0 [18] testing set using AO2-DETR with ResNet50 backbone. DOTA-v1.0 contains 15 common categories, such
as large-vehicle, small-vehicle, plane, swimming-pool, ship, tennis-court, etc. The confidence threshold is set to 0.3 when visualizing these results. One color
stands for one object class. Best viewed in color and with zoom.

OPR and IBR modules on the SKU110K-R and HRSC2016
datasets, shown in Table VII. The results show that the
proposed OPR and IBR modules can effectively mitigate
the problems of misalignment and cluttered features, and
can better model contextual information, especially for dense
regions.

3) Set Matching Loss: For classification and bounding
box distance loss, we follow the default settings of the
Deformable DETR, i.e., Focal loss and L1 loss. The effect
of set matching loss are shown in Table V and Table VII.
Using rotation-aware set matching loss (RAL) can significantly
improve the performance. The transformer-based methods
apply one-to-one assignments during the training stage, only
one sample with the minimum matching cost is assigned as
the positive sample, and the others are all negative samples.
If we cannot ensure the accurate label assignment process, the
initial training epoch will be completely chaotic and difficult
to converge. For rotation-aware set matching loss, we have
tried different set matching losses and different combinations,
such as GWD [52], KLD [39], and Rotated IoU [38]. The
experimental results in Table VIII prove that Rotated IoU
performs best. With the rotation-aware set matching loss,
the performance has been greatly improved, from 56.65%
to 77.73%. We can ensure the correct one-to-one matching
process in AO2-DETR by adding the rotation-aware set match-
ing loss, which solves the problem of limited matching. Other

existing loss works also can be easily extended to AO2-DETR,
but exploring the importance of losses is not the focus of this
paper.

4) Number of Queries: In this experiment, we compare
changing the number of queries at the test stage to different
models trained with varying numbers of queries, as shown in
Fig. 8. Taking the DOTA-v1.0 dataset as an example, we can
observe that with the gradual increase in the number of queries,
the performance has been improved. When the number of
queries is set to 150, the mAP is only 74.06%, but when
the number of queries is increased to 300, the performance
can achieve 77.73% (improved by 3.67%). This indicates that
the number of queries is sufficient to cover the objects well.
When we increase the number of queries to 350 and 400, there
is a slight decline in performance. We suspect that redundant
object queries will interfere with some dense objects, resulting
in performance fluctuations.

In addition, we compare the FPS with varying numbers of
queries from 150 to 400, as shown in Fig. 9. We can see
that the number of queries has a smaller impact on FPS, and
when the number of queries increases from 150 to 400, the
FPS drops from 14.2 to 13.8 for the DOTA-v1.0 dataset, and
16.3 to 15.8 for the HRSC2016 dataset. To achieve a balance
of speed and performance, the number of queries is set to
300. For the DOTA-v1.0 dataset, the FPS is 14.0, and for the
HRSC2016 dataset, the FPS is 16.3.
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Fig. 11. Detection results on HRSC2016 [20] (the first row) and SKU110K-R [3] (the second row). Best viewed in color and with zoom.

With these ablation studies, we conclude that in the
AO2-DETR design: oriented proposal generation, adaptive ori-
ented proposal refinement, iterative bounding box refinement,
and rotation-aware set matching loss all play important roles
in the final performance.

E. Qualitative Results

Fig. 10 and Fig. 11 show the qualitative results of sam-
ple images from the DOTA, HRSC2016, and SKU110K-R
datasets. We can notice that the proposed method can deal
with various challenges in the AOOD task detection, including
multi-oriented objects, small objects, large aspect ratio objects,
and densely-packed objects. For example, as shown in Fig. 10,
AO2-DETR can properly detect objects of various sizes and
arbitrary orientations within the multi-category classification
problem; as shown in Fig. 11, AO2-DETR is outstanding in
the detection of large aspect ratio objects (the first row) and
densely arranged oriented objects (the second row). However,
there are still some failure cases, especially when the objects
are placed heavily occluded, the sizes of objects are extremely
small, and the color of objects is similar to the background.
Future transform-based AOOD methods can focus on address-
ing these difficult cases.

V. CONCLUSION

In this paper, we propose an end-to-end transformer-based
detector AO2-DETR for arbitrary-oriented object detection.
The proposed AO2-DETR comprises dedicated components
to address AOOD challenges, including an oriented pro-
posal generation mechanism, an adaptive oriented proposal
refinement module, and a rotation aware set matching loss
in order to accurately detect oriented objects in images.

The encoder-decoder architecture transforms the oriented
proposals (served as object queries) into each correspond-
ing object, which eliminates the need for hand-designed
components and complex pre/post-processing. Our approach
achieves state-of-the-art performance compared to recently
anchor-free and single-stage methods on the oriented datasets
(DOTA, SKU110K-R and HRSC2016 datasets). We validate
that the transformer can enable adaptive receptive fields for
oriented objects, thus it can deal with oriented and irregu-
lar placed objects naturally. Furthermore, we hope that this
encoder-decoder paradigm will promote future works in ori-
ented object detection.

Limitations: Compared with other CNN-based methods, the
main limitation of our method lie in the longer training conver-
gence time. It is widely known that the superior performance
of transformers requires relatively larger computation cost.
The future work of transformer-based AOOD methods can be
devoted to solving these challenges.
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