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A Novel Lip Descriptor for Audio-Visual Keyword
Spotting Based on Adaptive Decision Fusion

Pingping Wu, Hong Liu, Member, IEEE, Xiaofei Li, Ting Fan, and Xuewu Zhang

Abstract—Keyword spotting remainsa challenge when applied
to real-world environments with dramatically changing noise.
In recent studies, audio-visual integration methods have
demonstrated superiorities since visual speech is not influenced by
acoustic noise. However, for visual speech recognition, individual
utterance mannerisms can lead to confusion and false recognition.
To solve this problem, a novel lip descriptor is presented involving
both geometry-based and appearance-based features in this paper.
Specifically, a set of geometry-based features is proposed based
on an advanced facial landmark localization method. In order to
obtain robust and discriminative representation, a spatiotemporal
lip feature is put forward concerning similarities among textons
and mapping the feature to intra-class subspace. Moreover, a
parallel two-step keyword spotting strategy based on decision
fusion is proposed in order to make the best use of audio-visual
speech and adapt to diverse noise conditions. Weights generated
using a neural network combine acoustic and visual contributions.
Experimental results on the OuluVS dataset and PKU-AV dataset
demonstrate that the proposed lip descriptor shows competitive
performance compared to the state of the art. Additionally, the
proposed audio-visual keyword spotting (AV-KWS) method based
on decision-level fusion significantly improves the noise robustness
and attains better performance than feature-level fusion, which is
also capable of adapting to various noisy conditions.

Index Terms—Audio-visual fusion, keyword spotting, noisy
conditions, visual speech recognition.

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) has gained wide
research attention in the past decades [1]–[3]. In some

scenarios, continuous speech recognition that performs a
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Fig. 1. Primary modules of an AV-ASR system.

complete transcription is not necessary since the key informa-
tion lies in only part of the input utterance [4]. Alternatively,
keyword spotting (KWS) deals with the identification of some
predefined words instead of the whole utterance and can ob-
tain fast access to the key information [5], [6]. Compared with
continuous speech recognition, KWS has the capability to cope
with situations where various disfluencies and artifacts make the
full-scale speech recognition difficult. Besides, without entire
utterances to decode, KWS also leads to less time complexity.
Therefore, KWS is more suitable for special applications like
human-robot interaction (HRI).

For KWS, there are three typical approaches: HMM-filler
based KWS, phoneme lattice based KWS and large vocabulary
continuous speech recognition (LVCSR) based KWS [7]. The
most common KWS approach is LVCSR-based KWS which
uses an LVCSR system to generate a word lattice and then per-
form a search within the lattice for the keyword. Although state-
of-the-art KWS technology has achieved significant progress
and has been successfully applied to some well-defined applica-
tions [8]–[10], its performance degrades heavily when applied
to real-world environments due to the massive corruption of
speech signals.

In order to improve the performance of ASR in the pres-
ence of noise, numerous methods have been explored, one of
which employs the visual information of vocal organs dur-
ing the articulating process. Indeed, the intrinsic mechanism
of both human speech production and perception is bimodal
[11]. When we communicate with others, we not only “listen”
but also “look”. Moreover, visual information is not affected
by the acoustic environment. Therefore, audio-visual automatic
speech recognition (AV-ASR) that combines visual speech with
acoustic speech, is widely investigated to improve noise robust-
ness [12]–[16]. Fig. 1 shows the basic diagram of AV-ASR,
including acoustic feature extraction, visual front end design
and audio-visual integration. Visual front end design includes
face detection, lip localization and visual feature extraction.
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Fig. 2. AV-KWS system showing parallel spotting strategy.

While extensive research has been conducted on AV-ASR,
few studies address audio-visual keyword spotting (AV-KWS).
Ming Liu et al. designed an English-oriented audio-visual word
spotter based on feature-level fusion without any adaption to
various noisy conditions [17]. Shivappa proposed a hierarchical
audio-visual cue integration framework for activity analysis in
intelligent meeting rooms where KWS is merely a small task
used to evaluate the performance of beamforming, without spe-
cific research on AV-KWS [18]. Additionally, there has been
a major focus on English-oriented audio-visual isolated word
recognition or connected word recognition, but few studies have
addressed AV-KWS. Furthermore, fairly little attention has been
paid to AV-KWS for Mandarin, which is one of world’s major
languages.

In this paper, a decision fusion based AV-KWS strategy is
proposed for Chinese Mandarin using a novel lip descriptor.
Fig. 2 shows the overall diagram of our AV-KWS system. This
paper is a refined and expanded version of our conference pro-
ceedings paper [19]. The main contribution of this paper is
as follows. 1) For visual speech recognition, a novel lip de-
scriptor is proposed that represents robust and discriminative
shape and texture information aiming at suppressing large intra-
class variance. Specifically, the state-of-the-art method of facial
landmark localization is applied and a set of geometry-based
features is proposed based on the localized landmarks. Also a
spatiotemporal lip feature is proposed that represents texture
changes concerning similarities among them. 2) To adaptively
deal with diverse noise conditions and complementarily com-
bine audio speech and visual speech, a parallel two-step KWS
strategy based on decision fusion is included. Besides, weights
generated using a neural network combine acoustic and visual
contributions.

The rest of this paper is organized as follows. In Section II, a
novel lip descriptor is presented which consists of the shape
difference feature (SDF) and the spatiotemporal lip feature
(STLF). In addition, facial landmark localization used for lip
region cropping is introduced. Section III presents our adaptive
audio-visual integration strategy based on decision-level fusion.
Issues in generating integrating weights using a neural network

based on stream reliability are also discussed. Then, a parallel
two-step keyword spotting strategy as well as an additional step
that deals with the time-overlapping situation is described. Ex-
perimental results and discussions are provided in Section IV.
Finally, conclusions are drawn in Section V.

II. VISUAL FEATURE EXTRACTION

Visual speech recognition (VSR), also known as lipreading,
is a task of recognizing utterances by analyzing visual record-
ings of a speaker’s talking mouth without any acoustic input
[20]. For both AV-ASR and VSR, visual feature extraction is
a key research topic and has drawn wide research attention. A
review of recent advances in visual speech recognition can be
found in [21]. Ziheng Zhou et al. proposed a generative latent
variable model to provide a compact representation of visual
speech data and obtained promising results [20]. In earlier work
[22], a practical lipreading system was developed using a simple
deterministic model with a low-dimensional manifold, through
which visual features extracted from frames of a video could be
projected onto a continuous deterministic curve embedded in a
path graph. Based on the proposed method, speech videos can
be normalized to a standard length. In [23], a spatiotemporal
descriptor based on local binary patterns was used for describ-
ing isolated phrase sequences, which was originally proposed
for texture recognition. Yuru Pei et al. presented a random for-
est manifold technique and applied it to lipreading in color and
depth videos [24], in which multiple conventional features like
local binary pattern (LBP) and histogram of gradients (HOG)
were employed. Generally, most work utilizes either geometry-
based or appearance-based visual features directly from other
recognition tasks like texture, face, and expression recognition
without considering the characteristic of talking mouths. More-
over, most work overlooks the state-of-the-art approaches of
facial landmark localization, which can be used to accurately
crop the region of the talking mouth.

In the following subsections, first, an advanced facial land-
mark localization method is employed to promote the process
of visual feature extraction, which is crucially important for
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Fig. 3. Flowchart of lip region cropping. (a) Input utterance video, then perform the coarse face detection. (b) Fast shape regression in a coarse to fine manner.
(c) Face alignment and cropped lip regions.

visual feature extraction in VSR. Second, shape difference fea-
tures are presented to represent geometric information of lips.
Finally, a spatiotemporal lip feature is introduced to capture tex-
tures and dynamics of lip movements concerning the following
two aspects in the process of speaking: 1) individual variables
containing personal identity information leading to large intra-
class variance, which are irrelevant to VSR and need to be
suppressed; 2) utterance variables including texture, shape and
dynamic changes of the mouth region during speaking, which
are the key resource to distinguish different utterances.

A. Lip Region Cropping

Facial landmark localization locates fiducial points on a face
image, which is essential for tasks like face recognition and
face animation. As a classical method of facial landmark lo-
calization, the active appearance model (AAM) is customarily
used for the conventional visual front-end in AV-ASR. It is an
optimization-based method relying on a parametric model that
minimizes parametric errors in the training process. This method
is indirect and sub-optimal because smaller parameter errors are
not necessarily equivalent to smaller alignment errors. Also, it
is well known that AAM is highly sensitive to initialization due
to gradient descent optimization. In recent related work [25]–
[28], considerable improvements have been made. In particular,
a novel regression-based approach without using any paramet-
ric shape models is presented in [26]. It shows extraordinary
performance in both accuracy and efficiency on three canonical
databases BioID [29], LFPW [30] and LFW87 [31]. Based on
this approach, a face shape or semantic facial landmark method
is employed here for lip region cropping instead of the conven-
tional AAM.

Assume that a face shape S = [x1 , y1 , . . . , xN , yN ]T con-
sists of N facial landmarks. Given a facial image, the goal
of face landmark detection is to estimate a shape S that is as
approximate as possible to the true shape Ŝ, i.e., minimizing
‖S − Ŝ‖. The basic shape regression framework is as follows.
First, boosted regression [32] is used to combine T weak regres-
sors (R1 , . . . , Rt , . . . , RT ) in an additive fashion. Given a facial
image I and initial face shape S0 , each regressor computes a
shape increment ΔS from image features and then updates the
face shape, which can be formulated as

St = St−1 + Rt(I, St−1), t = 1, . . . , T. (1)

Fig. 4. Four types of shape representation: (a) the lip width and height,
(b) shape information in the vertical direction, (c) the outer lip contour, and
(d) the inner lip contour.

Given N training examples {(Ii, Ŝi)}N
i=1 , the regressors are

sequentially learned until a training error no longer decreases.
Each regressor Rt is learned as follows:

Rt = arg min
R

N∑

i=1

∥∥∥Ŝi − (St−1
i + R(Ii, S

t−1
i ))

∥∥∥ (2)

where St−1
i is the estimated shape in previous stage. Compared

with [26], a smart restart approach [27] is added to predict previ-
ous failure cases. Referring to [26], [27], the two-level cascaded
regression and correlation-based feature selection are adopted
in this paper. In regression preprocessing, a rough face box is
detected, then the landmark is estimated in a coarse-to-fine man-
ner as illustrated in Fig. 3(b). Sequentially, geometric centers of
eyes and mouths can be detected. As a result, the lip region is
cropped depending on the mouth center after normalizing the
face using pre-defined ratio parameters for the whole sequence
as shown in Fig. 3(c).

B. Shape Difference Feature

Since lip landmarks can be accurately detected due to the
efficiency of the shape regression model, a geometry-based fea-
ture is concerned to precisely represent the shape, such as lip
width, height and contour. The feature named shape difference
feature (SDF) is proposed to take full advantage of the derived
landmarks.

Given M lip landmarks, four types of representations are
developed to comprehensively describe the lip shape here,
as shown in Fig. 4 by calculating the Euclidean distance
between two landmarks: (a) The lip width and height form a
vector denoted as d1 ; (b) All the vertical distances between
corresponding landmarks form a vector d2 ; (c) The outer
lip contour is represented by vector d3 including distances
between outer circle landmarks and mouth center; (d) The inner
lip contour is represented by vector d4 including distances
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Fig. 5. Process of obtaining spatiotemporal lip feature.

between inner circle landmarks and mouth center. Denote
dt = [d1

T ,d2
T ,d3

T ,d4
T ]T as the feature vector from the

t-th frame. Concerning the interference from difference of
individual mouth appearances, the final shape difference feature
vector d is computed as

d = [(Δd1)T , (Δd2)T , . . . , (ΔdT )T ]T

Δdt = |dt+1 − dt |, t = 1, . . . , T (3)

where T is the number of frames of the utterance video and | · |
means taking the absolute value of each element of dt+1 − dt .

C. Spatiotemporal Lip Feature

The mouth appearances of different speakers uttering the
same word are diverse, which leads to large intra-class vari-
ance. To obtain a robust representation of texture and dynamic
changes in the detected lip region and to narrow down intra-
class distance, a spatiotemporal lip feature (STLF) is proposed
with the following steps: 1) parting each cropped mouth re-
gion into K blocks and forming into K volumes by putting
corresponding blocks together in an utterance video; 2) extract-
ing low-level features from sampling patches; 3) employing
locality-constrained linear coding (LLC) [33] to encode low-
level features into higher ones and implementing the proposed
mix pooling; and 4) employing whitened principle component
analysis (WPCA) to narrow down intra-class variations. The
overall procedure is illustrated in Fig. 5.

As an aid to illustration, we introduce the term texton here
which is defined as a mini-template that consists of a varying
number of image bases with some geometric and photometric
configurations [34]. To enhance textons and suppress Gaussian
noise, a difference of Gaussians (DoG) filter is first applied to
each cropped mouth region. Sequentially, the low-level patch-
based features pi ∈ RD , i ∈ {1, 2, . . . , N} are extracted from
the volume, where D is the dimension of the feature vectors
obtained.

Locality-Constrained Linear Coding (LLC): Although the
low-level patch-based features are able to capture subtle tex-
tons in the mouth region, it is not optimal to use them directly

without coding since great similarities among textons may result
in low discriminability. To derive a more robust and discrimina-
tive descriptor, LLC [33], a fast and effective coding strategy is
used to encode the low-level patch-based features, which shows
better performance than common coding schemes such as vector
quantization and sparse coding.

When it comes to coding, a codebook needs to be employed
and K-Means [35] is utilized. Denote the over-complete sub-
codebook as Bk, which is learned from the low-level patch-
based features in the corresponding volume k. Therefore, the
codebook B is constructed as follows:

B = Bk |k = 1, . . . ,K}
Bk = [bk,1 , bk,2 , . . . , bk,M ] ∈ RD×M (4)

where M is the number of entries in the codebook and M � D.
Then, the low-level patch-based features can be encoded using
the following criteria, which has an analytical solution:

min
C

N∑

i=1

‖pi − Bkci‖2 + λ‖di � ci‖2

s.t. 1T ci = 1 ∀i (5)

where
⊙

denotes element-wise multiplication, ci is the recon-
structed vector, i.e., the code, C = [c1 , c2 , . . . , cN ] the set of
codes and di ∈ RM is a locality adaptor which assigns different
proportion for each basis according to similarity defined as

di = exp
(

dist(pi ,Bk )
σ

)

dist(pi ,Bk ) = [dist(pi , bk,1), . . . , dist(pi , bk,M )] (6)

where dist(pi , bk,j ) is the Euclidean distance between pi and
bk,j and σ is used to adjust the weight decay speed of the local-
ity adaptor. In (5), the item

∑N
i=1 ‖pi − Bkci‖2 representing

reconstruction error is minimized and the regularization term is
used to derive more discriminative reconstruction, generating
similar codes for similar textons. The analytical solution of (5)
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is as follows:

c̃i = (Ci + λdiag(d)) \1 (7)

ci = c̃i/1T c̃i (8)

where Ci = (Bk − 1pT
i )(Bk − 1pT

i )T denotes the data
covariance matrix.

Mix Pooling: After deriving a set of high dimensional codes,
feature pooling is applied here to obtain statistical information
in each volume. This also improves the robustness and makes
subsequent calculations more orderly. Generally, there are two
common pooling strategies, namely sum pooling and max pool-
ing. Specially, the feature of the k-th volumes can be obtained
as

sum pooling : xk =
T∑

t=1

∑

ci ∈S t
k

ci (9)

max pooling : xk = max
t∈[1,...,T ]

max
ci ∈S t

k

ci (10)

where T is the number of frames of the utterance video, St
k is

the t-th frame from the k-th volume, and ci represents the i-th
code in St

k .
Max pooling features can capture the salient properties of

a region [36], thus it can be employed in each divided block.
However, max pooling features among blocks in a volume could
result in losing dynamic information of the talking process. Thus
mix pooling is proposed to maintain the dynamic information
between frames in a volume while obtaining salient textons in
a block, which is defined as follows:

mix pooling : xk =
T∑

t=1

max
ci ∈S t

k

ci . (11)

WPCA: As the feature vector xk derived in the above step
is of high dimension, a compact representation needs to be ex-
plored. Commonly, principle component analysis (PCA) is used
to the reduce feature dimension by only preserving the eigenvec-
tors corresponding to large eigenvalues. Considering that there
are great differences among utterances of the same keyword
by different people, PCA may have a tendency to magnify the
difference. To suppress the difference from personal variations,
whitened PCA (WPCA) is applied through the following steps:
1) Map the feature xk to intra-class subspace by calculating the
intra-class covariance matrix Ck ∈ RM ×M of k-th volumes of
all training examples. 2) Let Λ = {λ1 , . . . , λg} be the g largest
eigenvalues and V = [v1 , . . . ,vg ] be the corresponding eigen-
vectors. 3) Obtain a compact representation yk for the k-th
volume of an utterance video as follows:

yk = diag(λ−1/2
1 , . . . , λ−1/2

g )V T xk . (12)

Note that the features are multiplied by the inverse of the
eigenvalues, which suppresses the responses from larger eigen-
values. Therefore, the difference from individual variables, i.e.,
intra-class dissimilarity is reduced. Thus the feature vector for
all K volumes of an utterance can be represented as

y = [y1
T ,y2

T , . . . ,yk
T ]T . (13)

Fig. 6. Framework of feature-level fusion and decision-level fusion.
(a) Feature-level fusion. (b) Decision-level fusion.

We also apply WPCA to SDF which was introduced in the
previous subsection, and it remains the same notation d. So the
combination of two features can be represented as

f = [dT , μ · yT ]T (14)

where μ is an adjustment factor to balance the relative impor-
tance of two features. To select a proper μ, a method similar to
that in [37] is adopted.

III. PARALLEL TWO-STEP KWS STRATEGY BASED ON

DECISION FUSION

A. Adaptive Audio-Visual Integration

For AV-KWS, the audio-visual integration module plays an
important role. Obviously, contributions of acoustic information
and visual information are different under various noisy condi-
tions. Therefore, the decision on how to fuse acoustic and visual
information significantly influences the final performance. Gen-
erally, there are two broad fusion categories: feature-level fusion
and decision-level fusion [14]. Feature-level fusion directly con-
catenates the features of the two modalities into a larger feature
vector in a plain way, or it adopts some appropriate transfor-
mations. Recognition is then conducted using a single classifier
based on the concatenated feature vector as shown in Fig. 6(a).
Alternatively, in decision-level fusion, audio and video modal-
ities are integrated at the classifier output level as shown in
Fig. 6(b). Specifically, decision fusion is classified into three
possible categories, namely “early” integration (multi-stream
HMM), “intermediate” integration and “late” integration inte-
gration. These three categories respectively correspond to clas-
sification at state-level, word-level and utterance-level [11].

Compared with feature-level fusion, decision-level fusion
approaches have important advantages in handling different
noisy conditions [11], [14]. Feature-level fusion concatenates
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Fig. 7. Log-likelihoods of HMMs under different noisy conditions.

acoustic features and visual features into a larger feature vector
with higher dimensionality, thus more training data are needed
to ensure adequate probabilistic modeling. In contrast to
feature-level fusion, decision-level fusion can explicitly model
the reliability of two modalities, which is of great significance
since the discrimination power of the two modalities may vary
widely. According to differing noisy conditions, integrating
weights are relatively easy to generate. This facilitates control
of the contributions of the two modalities using decision-level
fusion, independently handling the two modalities.

In this paper, late integration of decision fusion is employed
in order to cope with different noise conditions and develop
a noise-robust AV-KWS system. Also, conventional AV-KWS
based on HMM is utilized, where acoustic HMMs and visual
HMMs are respectively trained to provide corresponding modal-
ity likelihoods of a given multi-media source. Integrated scores
can be obtained by linearly combining acoustic and visual log-
likelihoods of keyword candidates using the appropriate weights
as follows [38]:

log p(OAV |λi) = γ log p
(
OA |λA

i

)
+ (1 − γ) log p

(
OV |λV

i

)

(15)
where γ denotes the integration weight with a value between
0 and 1. OA and OV are the acoustic and visual feature se-
quences of a keyword candidate while λA

i and λV
i are the acous-

tic and visual HMM of keyword i. Items log p(OA |λA
i ) and

log p(OV |λV
i ) represent the corresponding acoustic and visual

log-likelihood.
For a specific environment, an integration weight with a con-

stant value can be estimated according to optimal performance
under specified conditions. However, when audio-visual envi-
ronments change dramatically, a fixed integration weight is in-
sufficient to cope with the noise-varying conditions. Confronted
with diverse noisy conditions, a crucial issue lies in obtaining
adaptive integration weights based on the reliabilities of two
modalities [39]. Fig. 7 shows a typical example of the output
log-likelihoods given a speech with different noise conditions. It

can be observed that the output log-likelihoods of each HMM in
quiet environments display great differences while small differ-
ences are noted when environments are noisy. A large difference
reflects less ambiguity and larger certainty for recognition. Since
the output log-likelihood of HMMs can reflect current noisy con-
ditions, it has been commonly used as a reliability measure [40].
Various forms of reliability measures based on log-likelihoods
have been implemented by researchers [41]–[43]. In this paper,
the average difference against the best hypothesis with the max-
imum log-likelihood [42] is adopted as the reliability measure

D =
1

N − 1

N∑

i=1

(
max

j
Lj − Li

)
(16)

where Li = log p(O|λi) is the output log-likelihood of the i-th
HMM and N denotes the number of HMMs.

Studies show that the average difference against the maxi-
mum log-likelihood (Diffmax) in (16) has the best recognition
performance under different noisy conditions from an overall
point of view [14]. Lewis and Powers pointed out that the in-
trinsic errors of other dispersion forms in measuring reliabilities
leading to their inferiority to Diffmax [44]. Therefore, the re-
liability measure of average difference against the maximum
log-likelihood is used in this paper.

A neural network is then utilized to map the two input reliabil-
ities to the optimal weight. Regarding a keyword candidate with
a starting and ending time, corresponding reliabilities of each
modality (DA and DV ) can be effectually obtained. Integrating
weight γ can be calculated by the function f modeled by the
neural network for a given pair of acoustic, visual reliabilities
(DA,DV ) as follows:

γ = f(DA,DV ). (17)

In order to obtain adaptive weights for various conditions,
acoustic speech utterances with different SNRs and visual
speech utterances with different image resolutions are utilized
to train the neural network. The trained neural network can gen-
erate the optimal weight of a keyword candidate for different
conditions, not limited to the conditions used for training.

The precise training process proceeds as follows. 1) Calcu-
late DA and DV of a given labeled keyword (The keyword in
the utterance is artificially labeled). 2) Exhaustively search the
optimal weight over the space of [0,1] with a step of 0.01 and
check whether the recognition result using the particular weight
value is correct. 3) Train the neural network using the input
reliabilities and the corresponding optimal weights.

B. Two-Step Keyword Spotting Strategy

To determine the benefit of visual modality to KWS using the
adaptive weights, the conventional HMM-filler based KWS is
employed. This method is primarily used in application fields
such as dialogue systems, and command control and informa-
tion consultation. More specifically, our KWS system applies
the conventional two-stage strategy: picking out possible key-
word candidates to include true keywords embedded in uncon-
strained speech in the first stage, and rejecting false alarms in
the second stage. Since acoustic recognition performance drops
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significantly in acoustically noise conditions, the strategy of
merely performing visual re-scoring on the acoustic candidate
is abandoned. Alternatively, a parallel two-step recognition is
introduced to complementarily make full use of two modalities,
as shown in Fig. 2.

Step 1: With the trained acoustic and visual keyword HMMs
as well as the filler models, acoustic and visual keyword search-
ing are first conducted in parallel on the tested speech, generat-
ing a number of acoustic keyword candidates as well as visual
keyword candidates with the corresponding log-likelihoods.

Step 2: For a keyword candidate obtained by either modal-
ity with a starting and ending time, re-scoring based on the
other modality of the keyword is then performed since acoustic
keyword candidates may not be the same as the visual ones, es-
pecially when acoustic environments are too noisy. Therefore,
each candidate receives an acoustic and a visual log-likelihood.

With the corresponding acoustic reliability DA and visual re-
liability DV being calculated, the trained neural network takes
DA, DV as input factors and outputs the optimal weight. Next,
integrated scores of keyword candidates can be obtained by lin-
early combining the acoustic and visual log-likelihoods using
the estimated weights in (15). Finally, rejection is implemented
based on the integrated scores of each keyword candidate to
remove false alarms. Taking the background noise into consid-
eration, rejection based on likelihood ratio [45] (or log likeli-
hood difference) denoted as Lr is utilized due to its robustness
to noise, as follows:

Lr = log p(OAV |λi) − log p(OAV |Filler) (18)

where log p(OAV |λi) is the integrated log likelihood of the
keyword model λi and log p(OAV |Filler) is the integrated log
likelihood of the filler model. Similarly, log p(OAV |Filler) can
be calculated based on the filler model by linearly combining
corresponding acoustic and visual log likelihoods. The candi-
date is accepted as a true keyword when its log likelihood ratio
is greater than a threshold, otherwise it is considered as a false
alarm and is rejected.

Conventionally, recognition result analysis is performed by
comparing it with an artificially labeled reference after keyword
verification. As depicted in Fig. 8, some acoustic and visual
keyword candidates are directly removed as false alarms in the
rejection step (case (2) in Fig. 8). For those remaining candi-
dates after rejection, an additional step should be taken since
acoustic and visual keyword candidates may overlap in time.
Therefore, a criterion is required to deal with the situation. For
each acoustic and visual keyword candidate with a correspond-
ing time region and integrated loglikelihood, if the middle time
point of one modality keyword candidate falls within the time
region of the other modality keyword candidate, it is regarded as
an overlapping instance. Therefore, the candidate with greater
integrated loglikelihood is determined to be the true keyword
while the other is regarded as a false alarm (case (1) in Fig. 8).
For other cases (acoustic and visual keyword candidates do not
overlap in time), candidates are directly determined to be true
keywords (case (3), (4) in Fig. 8).

Fig. 8. Additional step to deal with the overlapping acoustic and visual
candidates.

TABLE I
PHRASES IN OULUVS DATASET

C1 “Excuse me” C6 “See you”
C2 “Goodbye” C7 “I am sorry”
C3 “Hello” C8 “Thank you”
C4 “How are you” C9 “Have a good time”
C5 “Nice to meet you” C10 “You are welcome”

IV. EXPERIMENTS AND DISCUSSIONS

A. Visual Speech Recognition

This subsection describes experiments that are implemented
on a visual-only benchmark database OuluVS [23] to validate
the proposed visual features. OuluVS consists of 20 subjects ut-
tering 10 phrases five times with resolution of 720× 576 pixels.
The phrases are listed in Table I. Visual speech recognition here
in particular is to classify the entire phrase. For preprocessing,
the lip regression model is applied and a 100 × 80 lip region
is cropped off from each video frame. Due to the difference of
subjects’ speeds of utterance, the same path graph based video
normalization scheme in [22] is employed. Concretely, all the
utterances are normalized to be 30 frames long. Experiments are
carried out in the speaker-independent way, that is the training
and testing data are from different subjects. Leave-one-subject-
out is employed by training on N − 1 (N is the total number of
subjects in the database) speakers, while testing on the remain-
ing one. Moreover, an SVM classifier is trained for each pair of
phrases, then the majority voting scheme is adopted to decide
which phrase the test utterance video belongs to.

Experiment 1: To evaluate STLF, several parameters first need
to be discussed. The DoG filter is set to σ = 2 while the sampling
patch size is set to 6 × 6 pixels. The dimension of WPCA is set to
g = 60 while PCA with the same dimension is also tested for an
alternative way. To obtain a favorable volume size, four segmen-
tation ways, K = 2 × 2, 4 × 2, 5 × 2 and 8 × 4 are considered.
Also, different codebook sizes M = 64, 128, 512 and 1024 are
evaluated. In addition, to verify the proposed mix pooling strat-
egy, max and sum pooling are also implemented. As shown
in Fig. 9(a), the most advantageous segmentation way is 8 × 4
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Fig. 9. (a) Comparisons of STLF on OuluVS with different segmentations and
pooling strategies with codebook size M = 512 using WPCA. (b) Comparisons
of STLF with different codebook sizes and dimension reduction methods in
segmentation 8 × 4 using mixpooling.

TABLE II
LIPREADING PERFORMANCES ON OULUVS

Datasets Methods Accuracy (%)

DCT 37.09
SDF 54.35
STLF 76.25

OuluVS SDF+STLF 87.55
Zhao et al. [23] 58.85
Zhou et al. [22] 81.30
Pei et al. [24] 89.70

and mix pooling achieves more favorable performance than the
other two pooling strategies. Mix pooling with 8 × 4 segmenta-
tion achieves the highest recognition accuracy of 76.25%. This
is consistent with the previous hypothesis that the mix pooling
selects discriminative features in each frame through max pool-
ing while preserving the changes between frames through sum
pooling. From Fig. 9(b), it can be seen that WPCA has a more
competitive performance than PCA, since it has the ability of
reducing intra-class variation. The codebook size is set to 512
in the following discussions for a good tradeoff between the
performance and the efficiency.

Experiment 2: To explore the performances of SDF, STLF
and their combination, they are compared with state-of-the-art
lipreading methods proposed in [22]–[24]. Further, discrete co-
sine transform (DCT), a conventional feature extraction method
in VSR, is also employed as an elementary baseline. For STLF,
the optimal parameters are adopted, that is using 8 × 4 segmen-
tation, mix pooling and WPCA. In Table II and Fig. 10, “SDF
+ STLF” represents concatenation of the two feature vectors,
where the adjustment factor μ is set to 1.2 using coarse to fine
procedure. For DCT, 13 most important coefficients are uti-
lized and their first and second derivatives are included. More
details of the employed DCT can be found in [46]. Experi-
mental results in Fig. 10 show that the appearance-based feature
STLF demonstrates a far more competitive performance than the
geometric-based feature SDF. This is due to the fact that STLF
extracts from the pattern level intrinsically, where LLC retains
the ability to generate similar codes for similar textons, mean-
while mix pooling preserves most salient features and WPCA
reduces the intra-class variance. Despite the accurate detection

Fig. 10. Phrases recognition comparison of different features in the
speaker-independent way on the OuluVS database.

of lip landmarks, SDF still largely contains interference due to
differing magnitudes of mouth opening, and differing speeds
and accelerations of mouth movements. However, we regard
SDF as a by-product of facial landmark localization. It is not
computationally expensive but can be used profitably as a com-
plementary feature. As Fig. 10 shows, label “C1” to “C10”
indicate different short sentences in Table I, where “C6” de-
notes “See you” getting the poorest performance. This may be
caused by some quick pronouncing of “See” in the database as
no adequate feature is captured. In Table II, the combination of
SDF and STLF outperforms the methods proposed in [22], [23]
and nearly matches [24] while the performance of DCT is far
behind. Comparatively, Pei et al. [24] employed multi-modal
data HOG, LBP and trajectories shape as well as depth infor-
mation. Additionally, the computational complexity of STLF is
O(M + N), which is linearly related to the size of the codebook
and the number of sampled patches.

B. Audio-Visual Keyword Spotting on PKU-AV

As only a few common databases are available for AV-ASR
[11], [21], [47] and the existing audio-visual databases are rarely
concerned with AV-KWS of Mandarin, a novel audio-visual
database named PKU-AV is established to conduct experiments
considering AV-KWS of Mandarin.

This audio-visual database contains 20 subjects (12 male
Asians and 8 female Asians) and there are 300 utterances for
each subject. Concerning the integrated functions of the HRI
including such tasks as smile detection, gender recognition,
and age estimation recognition, 30 frequently used keywords
are defined. The 30 Mandarin keywords translated into English
are as follows: “Forward”, “Backward”, “Left”, “Right”, “Turn
around”, “Fast”, “Slow”, “Start”, “Stop”, “Continue”, “Pay at-
tention”, “Help”, “Gender”, “Age”, “Identification”, “Smile”,
“Expression”, “Hands up”, “Action”, “Tracking”, “Localiza-
tion”, “Photo”, “Display”, “Play”, “Record”, “Inquiry”, “Se-
lection”, “Function”, “Abstract”, “Update”. One example of a
full utterance including the keyword “Localization” is: “Please
carry out sound source localization”. In accordance with the
pronunciation characteristics of Chinese Mandarin, for this
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Fig. 11. Exemplar video frames in PKU-AV.

KWS task, six consonantal and five vocalic visemes are con-
sidered from 47 possible Chinese phonemes. Our database is
constructed with the addition of artificial acoustic noise. First,
an original database is collected in an acoustically quiet environ-
ment under controlled normal light conditions. Video images are
collected at 20 frames per second with a resolution of 640× 480
under the restriction that the mouth region is not occluded. Au-
dio speech is synchronously recorded at the sampling rate of 16
kHz and 16 bits per sample. Fig. 11 depicts some representation
video frames in the database.

To allow speaker-independent recognition, the database PKU-
AV is divided into three sets. 1) Training sets composed of
original AV data from 7 subjects are used to train acoustic and
visual HMMs. 2) Held-out sets consisting of AV data from 6
subjects are utilized to train the neural network. The noisy AV
data has acoustic SNRs of 20 dB, 10 dB and 0 dB by addition
of white noise. 3) Test sets composed of noisy AV data from
7 subjects are used to evaluate performances of our AV-KWS
system under various conditions, including different acoustic
noise (white and babble noise) with different SNRs (20 dB, 15
dB, 10 dB, 5 dB and 0 dB) as well as various image resolutions
(“100× 80”, “50× 40” and “25× 20”).

For all of the following experiments, the HMM-filler based
KWS method in [7] is employed and the commonly used Mel-
frequency cepstral coefficients (MFCCs) and its delta as well
as delta delta are extracted for acoustic features using the HTK
toolbox [48]. Extracted acoustic and visual features are individ-
ually used to train corresponding HMM classifiers. To illustrate,
both acoustic and visual keyword HMMs are trained based on
the whole word since keyword dependence can improve the per-
formance [49]. Sub-word units are used as corresponding filler
models and each sub-word unit is modeled with a 3-state HMM
with each state containing eight Gaussian components. Experi-
mentally, the number of hidden neurons of the neural network is
set to six and figure of merit (FOM) is utilized for measurement.
FOM is defined as the average percentage of correctly detected

Fig. 12. FOM performances of different visual features for keyword spotting.

keywords as the threshold is varied from one to 10 false alarms
per keyword per hour [7], [50]. For visual preprocessing, all the
faces in PKU-AV are successfully detected and the lip regres-
sion model is applied to obtain a 100 × 80 mouth region from
each video frame.

Experiment 3: Performances of SDF, STLF and their com-
bination on PKU-AV are tested for keyword spotting through
HMM. For DCT, STLF and its combination with SDF, the pa-
rameter settings are the same as in Experiment 2. Comparisons
with previous methods [19] are also carried out with the same
experimental protocols to explore the effectiveness of our pro-
posed visual features. As shown in Fig. 12, both SDF and STLF
outperform DCT while the improved performance of STLF is al-
most the double that of DCT. The combination of SDF and STLF
achieves the optimal result followed by STLF and ILBP-TOP
proposed in [19]. Moreover, it can be observed that the perfor-
mance of individual STLF outperforms that of LBP-TOP pro-
posed in [23] and ILBP-TOP, which demonstrates that STLF is a
more compact and discriminative representation. After combing
STLF with SDF, the performance is improved by about 5% as
SDF contains geometric supplementary information to STLF.

Experiment 4: In this experiment, the visual part and the
audio part are integrated based on the decision level. Exper-
iments are carried out to explore performances of the audio-
only, vision-only and audio-visual KWS using SDF, STLF and
their combination under various acoustic noise conditions (white
noise and babble noise). Fig. 13 indicates that the performance
of audio-only recognition significantly degrades as speech be-
comes noisier. Vision-only performance appears the same for all
the SNR conditions, which can be explained by the invariance
of visual conditions. In addition, the integration of acoustic and
visual modality significantly improves the noise robustness of
the KWS system. Clean speech utterances corrupted by white
noise with SNR of 20 dB, 10 dB and 0 dB are used to train the
neural network. And tests conducted on white noise and babble
noise speech utterances at various SNR conditions (20 dB, 15
dB, 10 dB, 5 dB and 0 dB) show that this approach also works
well for untrained noise conditions including different noise lev-
els as well as noise types. Moreover, audio-visual KWS using
STDF demonstrates more robustness performance than using
SDF when SNR declines, while using their combination obtains
the most favorable result.

Experiment 5: Next, a comparison is made between the
AV-KWS performance based on decision-level fusion using



WU et al.: NOVEL LIP DESCRIPTOR FOR AUDIO-VISUAL KEYWORD SPOTTING BASED ON ADAPTIVE DECISION FUSION 335

Fig. 13. Recognition performances of the audio-only, vision-only, and audio-visual KWS system under white noise and babble noise conditions. (a) Performance
of white noise condition using SDF, STLF, and their combination. (b) Performance of babble noise condition using SDF and STLF their combination. (a)
White–noise. (b) Babble noise.

TABLE III
AUDIO-ONLY, VISION-ONLY AND AUDIO-VISUAL PERFORMANCES

IN TERMS OF FOM (%) USING DIFFERENT FUSION METHODS

SNR(dB) 20 15 10 5 0

Audio-only 74.7 57.4 39.2 18.6 6.4
Vision-only 38.6 38.6 38.6 38.6 38.6
Feature-level AV [17] 77.2 65.9 49.2 40.9 37.5
Decision-level AV 80.5 69.1 58.2 43.7 40.8

adaptive weights (using “SDF+STLF” as visual features) and
the feature-based audio-visual keyword spotter proposed in [17]
on the database (white noise corrupted acoustic speech and orig-
inal visual speech). Since very little work has been implemented
for audio-visual keyword spotting, this method is compared to
the most related one [17]. As shown inTable III, this approach
is more robust to noise than that of [17]. The integrated audio-
visual performance is at least equal to or better than that of
unimodality while the integrated performance in [17] worsens
compared to vision-only performance at SNR of 0 dB. An expla-
nation of this phenomenon of the feature-level fusion approach
is that under extremely low SNR, the audio information intro-
duces harmful cues and may degrade the overall performance of
audio-visual fusion. To offset this, the contribution of acoustic
and visual modality is combined using adaptive weights ac-
cording to current SNR conditions in the decision-level fusion
method, which may complementarily produce a better overall
performance.

Experiment 6: Relatively free movement should be allowed
in a friendly face-to-face HRI, which may lead to different
face sizes concerning AV-KWS. In order to explore the in-
fluence of face size changes on performance, experiments are
carried out on videos with different resolutions. Fig. 14 shows
the performances of audio-only KWS and AV-KWS on differ-
ent face size changes using combinations of SDF and STLF,
where “100× 80”, “50× 40” and “25× 20” denote different

Fig. 14. FOM performances of different image resolutions.

resolutions of the mouth region. It can be observed that the
performances of AV-KWS degrade along with the decline of
image resolution, which can be explained by the loss of texture
information as well as motion information. In addition, perfor-
mances of audio-visual KWS are more competitive than those
of traditional audio-only KWS, especially under conditions with
low SNR. Even when the image resolution is down-sampled to
“25× 20”, audio-visual integration improves the general perfor-
mance compared to audio-only KWS. These performances of
different image resolutions caused by changes of image size can
be utilized to guide users to change positions in a face-to-face
HRI for more effective interaction. For instance, when perfor-
mance drops dramatically due to the low image resolution, a
reminder can appear that the current situation is not optimal for
interaction and the robot perhaps should move closer to the user.

C. HRI in Real Environments

This AV-KWS system is also attached to a robot platform.
Nicknamed Pengpeng II, it is an HRI oriented mobile robot
system as depicted in Fig. 15. It is also used as a platform for
sound source localization [51]. In the HRI environment, there
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Fig. 15. HRI-oriented mobile robot Pengpeng II.

TABLE IV
TRUE POSITIVE RATE (TPR) AND FALSE POSITIVE RATE (FPR)
OF OUR AUDIO-VISUAL KEYWORD SPOTTING ON PENGPENG II

SNR(dB) 18.6 11.2 4.8

TPR 70.2% 47.7% 32.5%
FPR 7.1% 5.8% 4.9%

are various kinds of noise in the hall including air-conditioning
noise, motor noise from the robot itself, human voices and so on.
In contrast to database experiments, the SNR cannot be strictly
controlled due to the complexity of noise.

Experiment 7: In the following experiment, three kinds of
noise intensity are estimated: weak noise with an average SNR
of 18.6 dB, moderate noise with an average SNR of 11.2 dB
and strong noise with an average SNR of 4.8 dB. An EPD mod-
ule is also necessary for HRI in real environments. Therefore,
a GMM-EPD [52] is used for detecting speech activity. Ten
lab members participate in the experiment and each speaks 50
sentences including 10 keywords defined in PKU-AV. In order
to interact with the robot in a friendly way, the subjects are
expected to interact within a range of 1.0 to 1.5 meters since
our visual method has the capability to deal with low-resolution
images to a certain degree. Average performances are shown in
Table IV.

Table IV shows that performances of audio-visual keyword
spotting based on decision fusion degrade compared to
experiments on the database PKU-AV in similar SNRs. The
main reason for the drop in performance is the complexity of
both acoustic and visual conditions: various noise, illumination
changes, movements of heads, distance changes and so on.
Moreover, in strong noise conditions when audio information

is unreliable, visual speech recognition significantly improves
the performance in real environments.

V. CONCLUSION

In order to obtain more robust HRI under various noisy con-
ditions, this paper develops an audio-visual keyword spotter
using novel visual features. The state-of-the-art facial landmark
localization method is utilized to accurately crop and align lip
regions. To make full use of the detected landmarks, a geometric
feature SDF is designed as a complementary feature. The pro-
posed STLF takes lip texton similarities into account and works
to reduce intra-class variances. A parallel two-step recognition,
based on both acoustic and visual modality, is also conducted in
order to make the best use of the two modalities under various
conditions. Experimental results validate the effectiveness of
the proposed features as well as their combination. In addition,
this audio-visual integration based on decision level improves
the noise robustness of the keyword spotter. This audio-visual
keyword spotter’s ability to deal with untrained noisy conditions
including different noise levels as well as noise types is strongly
confirmed.
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