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Sound Source Localization for HRI Using
FOC-Based Time Difference Feature

and Spatial Grid Matching
Xiaofei Li and Hong Liu

Abstract—In human–robot interaction (HRI), speech sound
source localization (SSL) is a convenient and efficient way to obtain
the relative position between a speaker and a robot. However,
implementing a SSL system based on TDOA method encounters
many problems, such as noise of real environments, the solution
of nonlinear equations, switch between far field and near field. In
this paper, fourth-order cumulant spectrum is derived, based on
which a time delay estimation (TDE) algorithm that is available
for speech signal and immune to spatially correlated Gaussian
noise is proposed. Furthermore, time difference feature of sound
source and its spatial distribution are analyzed, and a spatial grid
matching (SGM) algorithm is proposed for localization step, which
handles some problems that geometric positioning method faces
effectively. Valid feature detection algorithm and a decision tree
method are also suggested to improve localization performance
and reduce computational complexity. Experiments are carried
out in real environments on a mobile robot platform, in which
thousands of sets of speech data with noise collected by four
microphones are tested in 3D space. The effectiveness of our TDE
method and SGM algorithm is verified.

Index Terms—Fourth-order cumulant spectrum, human–robot
interaction (HRI), spatially correlated Gaussian noise, spatial grid
matching (SGM), speech sound source localization.

I. INTRODUCTION

A S A NATURAL and effective way, auditory function,
including sound source localization (SSL) and separation,

automatic speech recognition, speaker recognition, and so on, is
widely used for human–robot interaction (HRI), many atten-
tions to which had been paid over the last decades. SSL for
HRI means that a robot can compute the relative position of
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sound source through sound signals collected by a microphone
array fixed on the robot, where sound signal is speech in most
HRI cases. Robert from MIT installs a simple auditory system
for robots in 1995 [1]. Wang from Toronto University presents
a SSL system for robot localization and navigation based on
steered response power-phase transformation algorithm [2].
Hornstein implements a SSL system for humanoid robots based
on two microphones [3]. Honda Co. states an open source
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fourth-order cumulant (FOC) in time domain by Tugnait [23]
and Liang [24]. However, just like the cross correlation method,
for TDE, the periodicity of speech signal and non-Gaussian
noise often bring about confused peak of these time domain
estimators, which worsen their performance. To avoid the short-
age of time domain algorithm, we derive FOC spectrum and
cross spectrum in this paper. The multiplicative relationship
of each frequency spectrum in FOC spectrum indicates the
independence of multiple time delays from one signal to the
others. FOC spectrum and cross spectrum are subsequently
applied to estimate the time delay of speech sensor signals.
This TDE method is immune to spatially correlated Gaussian
noise and can estimate the time delay between two or multiple
sensor signals. Moreover, just like SCOT weighting function
in [11], a whitening function is proposed to suppress noise of
each channel and weaken confused peaks that time domain
estimators suffer. The method mentioned in this paragraph is
a refined and expanded version of the conference proceedings
paper [34].

Geometric positioning method is always used for the step of
localization with given time delays, which needs the solution of
hyperbolic equations that is a nonlinear optimization problem.
Foy proposes Taylor Series method to locate sound source
iteratively [26]. Maximum likelihood estimator [27] and least
square estimator [28]–[32] are two primary localization meth-
ods. The former requires lots of experimental samples to obtain
statistical properties of measurement noise. The latter solves
overdetermined nonlinear equations or approximative linear
equations to get the coordinates of sound source. Brandstein
proposed linear intersection method to localize distant sources
[33]. In this paper, time difference feature extracted by FOC
spectrum and its spatial distribution are analyzed, and it can be
concluded that the relationship between time difference features
and sound sources is one-to-one correspondence. Moreover, the
farther the distance between two sound sources is, the greater
the difference of two features becomes. Based on properties
of spatial distribution, a novel localization algorithm called
spatial grid matching (SGM) is proposed. The best matched
grid with the time difference feature of a unknown sound
source is chosen as the position of sound source. By adjusting
the size of grid, SGM method can handle the problem of
switching between far field and near field easily and weaken
some dimensions selectively. In addition, making use of one
or multiple recordings from the same sound source position,
valid feature detection algorithm eliminates those wrong time
differences, and generates a new valid feature vector. Decision
tree is suggested for reducing the number of times of template
matching. These methods mentioned in this paragraph are a
refined and expanded version of the conference proceedings
paper [35].

The rest of this paper is organized as follows: In Section II,
FOC spectrum is derived, and the TDE algorithm is also
given. In Section III, a microphone array is first constructed,
based on which time difference feature is analyzed, and then
SGM method is presented. A SSL system for HRI is con-
structed in Section IV. Then, experiments and analysis are
provided in Section V. Finally, the conclusion is given in
Section VI.

II. FOC-BASED TDE

A. FOC Spectrum

The Fourier transform of FOC will be derived in this section,
in which a non-Gaussian signal x(t) is considered. Unlike third-
order cumulant, the skewness of x(t) is unrestricted, which can
be zero or nonzero. The FOC of signal x(t) is defined as

c4x(τ1, τ2, τ3) =E {x(t)x(t+ τ1)x(t+ τ2)x(t+ τ3)}
−Rx(τ1)Rx(τ3 − τ2)

−Rx(τ2)Rx(τ3 − τ1)

−Rx(τ3)Rx(τ2 − τ1). (1)

In practical applications, x(1), · · · , x(N) denote discrete
samples of signal x(t), and N is sample length. The biased
estimation of FOC is

ĉ4x(τ1, τ2, τ3) = m̂4x(τ1, τ2, τ3)− R̂x(τ1)R̂x(τ3 − τ2)

−R̂x(τ2)R̂x(τ3 − τ1)− R̂x(τ3)R̂x(τ2 − τ1) (2)

where m̂ and R̂ are the biased estimation of fourth-order
moment and correlation function

m̂4x(τ1, τ2, τ3) =
1

N

N∑
n=1

x(n)x(n+ τ1)x(n+ τ2)x(n+ τ3)

(3)

R̂x(τ) =
1

N

N∑
n=1

x(n)x(n+ τ) (4)

FOC spectrum is defined as the 3D Fourier transform of ĉ4x

P4x(ω1, ω2, ω3) =
∑
τ1

∑
τ2

∑
τ3

ĉ4xe
−j(ω1τ1+ω2τ2+ω3τ3). (5)

It is well-known that the Fourier transform of m̂4x is

M4x(ω1, ω2, ω3)=
1

N
X(−ω1 − ω2 − ω3)X(ω1)X(ω2)X(ω3)

(6)

where X(ω) is the Fourier transform of x(n). In addition, the
Fourier transform of the second term of ĉ4x can be derived as

P1 =
∑
τ1

∑
τ2

∑
τ3

R̂x(τ1)R̂x(τ3 − τ2)e
−j(ω1τ1+ω2τ2+ω3τ3)

=
∑
τ1

∑
τ2

∑
τ3

{
1

N

N∑
n=1

x(n)x(n+ τ1)

}

×
{

1

N

N∑
n=1

x(n+ τ2)x(n+ τ3)

}
e−j(ω1τ1+ω2τ2+ω3τ3)

=
1

N2

{
N∑

n=1

x(n)
∑
τ1

x(n+ τ1)e
−jω1τ1

}

×
{

N∑
n=1

(∑
τ2

x(n+ τ2)e
−jω2τ2

)
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×
(∑

τ3

x(n+ τ3)e
−jω3τ3

)}

=
1

N2

{
N∑

n=1

x(n)ejω1nX(ω1)

}

×
{

N∑
n=1

ej(ω2+ω3)nX(ω2)X(ω3)

}

=
1

N2
X(−ω1)

(
e−j(−ω2−ω3)(N+1)/2

× sin ((−ω2 − ω3)N/2)

sin ((−ω2 − ω3)/2)

)

×X(ω1)X(ω2)X(ω3)

≈ 1

N
X(−ω1)δ(−ω2 − ω3)X(ω1)X(ω2)X(ω3) (7)

where δ(ω) is the unit sample signal, and the relationship ≈ is
valid when N is big enough. Similarly, the Fourier transform of
the third and fourth terms of ĉ4x can be obtained as P2 and P3

P2 =
1

N
X(−ω2)δ(−ω1 − ω3)X(ω1)X(ω2)X(ω3) (8)

P3 =
1

N
X(−ω3)δ(−ω1 − ω2)X(ω1)X(ω2)X(ω3). (9)

Finally, FOC spectrum can be represented as:

P4x(ω1, ω2, ω3) =M4x(ω1, ω2, ω3) + P1 + P2 + P3

=X ′(ω1, ω2, ω3)X(ω1)X(ω2)X(ω3). (10)

where

X ′(ω1, ω2, ω3)

=
1

N
{X(−ω1 − ω2 − ω3) +X(−ω1)δ(−ω2 − ω3)

+X(−ω2)δ(−ω1 − ω3) +X(−ω3)δ(−ω1 − ω2)}
(11)

Similarly, the cross FOC spectrum of two different signals x(n)
and y(n) can be computed as

Pxyxx(ω1, ω2, ω3) = X ′(ω1, ω2, ω3)Y (ω1)X(ω2)X(ω3).
(12)

Formula (10) and (12) show that the relationship of each
frequency spectrum is multiplicative in FOC spectrum, which
causes the additive relationship of each phase spectrum. This
property indicates the independence of multiple time delays
from one signal to the others.

B. TDE

Second-order statistics is widely used for estimating the time
delay of two sensor signals. However, in the case of non-
Gaussian sound source, higher order cumulant can suppress
spatially correlated Gaussian noise. For example, as Gaussian

noise, air-conditioning noise is common in practical applica-
tions. FOC can deal with those signals with zero skewness, such
as speech signal, for which the third-order cumulant is invalid.

Two discrete sensor signals can be written as

x(n) = s(n) + v0(n)

y(n) = s(n−D) + v1(n) (13)

where s(n) is the sound source signal, and v(n) denotes
spatially correlated Gaussian noise whose FOC equals zero.
Signal x(n) denotes reference signal that is considered to have
zero time delay with source signal. Signal s(n) is independent
with v(n). D denotes the time difference between x(n) and
y(n). Because of the semi-invariance of cumulant, the FOC and
spectrum of x(n) are

c4x(τ1, τ2, τ3) = c4s(τ1, τ2, τ3) + c4v0
(τ1, τ2, τ3)

= c4s(τ1, τ2, τ3) (14a)

P4x(ω1, ω2, ω3) =P4s(ω1, ω2, ω3) (14b)

where the semi-invariance causes that the cumulant of the sum
of two independent signals equals the sum of two cumulants
of these two signals. And FOC of Gaussian signal c4v0

equals
zero. Similarly, cross FOC and spectrum of these two signals
can be calculated by (2) and (12) as

cxyxx(τ1, τ2, τ3)

= c4s(τ1 −D, τ2, τ3) (15a)

Pxyxx(ω1, ω2, ω3)

= S ′(ω1, ω2, ω3)
{
S(ω1)e

jω1D
}
S(ω2)S(ω3)

= P4s(ω1, ω2, ω3)e
jω1D. (15b)

Define function

I(ω1, ω2, ω3) = ψ
Pxyxx(ω1, ω2, ω3)

P4x(ω1, ω2, ω3)
= ejω1D (16)

where ψ is a weighting function to whiten the spectrum and
suppress noise of each channel, which is

ψ(ω1, ω2, ω3) =
|P4x(ω1, ω2, ω3)|
|Pxyxx(ω1, ω2, ω3)|

(17)

where | · | denotes the amplitude spectrum. Let ω2 and ω3 take
arbitrary constants, such as ω2 = ω3 = 0. Then, function

T (τ) =

N∑
ω1=1

I(ω1, ω, ω)e
−jω1τ = δ(τ −D) (18)

takes the peak at τ = D, which is the time delay sample of two
sensor signals. Through whitening the spectrum, ψ improves
the time-delay resolution and suppresses the energy of sidelobe.
In theory, the values of ω2 and ω3 do nothing about the
estimation of time delay.

Algorithm 1 shows the procedure of TDE based on FOC
spectrum, where x(n) and y(n) are defined by (13). Symbol K
in line 4 and 5 denote the number of frames. Function FT
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denotes Fourier transform. Function FOCS represents the
calculation of FOC spectrum and cross spectrum shown as (10)
and (12).

Algorithm 1 TDE

1: Input x(n), y(n)
2: Procedure Enframe(x, y)
3: Set the length of each frame as M and overlap as M/2
4: x(k)(n) ← x((k − 1)M/2 + n)k = 1, · · · ,K
5:y(k)(n) ← y((k − 1)M/2 + n)k = 1, · · · ,K
6: Procedure FourierTransform(x(k), y(k))
7: X(k)(ω) ← FT (x(k)(n))
8: Y (k)(ω) ← FT (y(k)(n))
9: Procedure FOCSpecturm(X(k), Y (k))

10: P̂ (k)
4x (ω1, ω2, ω3) ← FOCS(X(k))

11: P̂ (k)
xyxx(ω1, ω2, ω3) ← FOCS(X(k), Y (k))

12: Procedure Mean(P
(k)
4x , P

(k)
xyxx)

13: P̂4x(ω1, ω2, ω3) ← 1
K

∑K
k=1 P

(k)
4x (ω1, ω2, ω3)

14: P̂xyxx(ω1, ω2, ω3) ← 1/K
∑K

k=1 P
(k)
xyxx(ω1, ω2, ω3)

15: Procedure I(P̂4x, P̂xyxx)

16: I(ω1, ω2, ω3) ← |P̂4x(ω1,ω2,ω3)|
|P̂xyxx(ω1,ω2,ω3)|

P̂xyxx(ω1,ω2,ω3)

P̂4x(ω1,ω2,ω3)

17: Procedure TDE(I)
18: ω2 ← 0
19: ω3 ← 0
20: T (τ) ← FT (I(ω1, ω2, ω3))
21: D ← argmaxτ{T (τ)}
22: return D

III. TIME DIFFERENCE FEATURE AND SGM

In this section, a microphone array model is constructed
in Part A, which is suitable for HRI that the azimuth and
horizontal distance of a single speaker can be localized in real
time. Base on this microphone array, time difference feature
of a sound source and its spatial distribution are presented in
Part B. Then, a novel localization method based on the spatial
properties of time difference feature, termed SGM, is proposed
in Part C. Finally, valid feature detection algorithm is proposed
in Part D.

A. Microphone Array Model

A microphone array for HRI has been constructed in [35],
[36]. The following issues should be considered for designing
the microphone array:

1) The SSL task to be solved.
2) The cost of equipment.
3) Computational complexity.
4) The shape of platform where microphone array is fixed.
The SSL system is used for HRI, in which azimuth and

horizontal distance of speaker should be localized, and it is
unimportant for HRI to localize the vertical height of speaker in
most cases. Localizing the azimuth and the horizontal distance
of sound source in 3D space needs more than two micro-
phones. For omnidirectional azimuth localization, microphone

Fig. 1. Microphone array model for HRI.

array should be approximately isotropic in horizontal plane.
The aperture of microphone array should be big enough for a
suitable localization resolution. In order to reduce the cost of
equipment and computational complexity, the less microphones
are, the better. Microphone array is installed on a horizontal
plane of a robot with a specific height, so the shape of the
robot should be taken into account. A microphone array with
a cruciform plane is shown in Fig. 1, which includes four
microphones.

B. Spatial Distribution of Time Difference Feature

The symbol τmn denotes time difference of two signals
recorded by m-microphone and n-microphone. The number of
microphones used in the SSL system is M . Then, M(M − 1)/2
pairs of time differences can be obtained, and only M − 1 pairs
of them are independent mutually. However, the measurement
of time difference always exists deviation, even mistake, and
more time differences are, more robust. Thence, all time differ-
ences can be combined into a feature vector as

τ = [τ12, τ13, . . . , τmn, . . . , τ(M−1)M ]. (19)

The coordinates of sound source Si and microphone Rm are
defined as si = [xsi , ysi , zsi ] = [dicos(αi), disin(αi), hi] and
rm = [xrm , yrm , zrm ], where αi, di, and hi are the azimuth,
horizontal distance, and height of sound source Si, respectively.

Then, the feature of sound source Si can be computed as

dSiRm
= |si − rm| (and dSiRn

= |si − rn|)
τSiRmn

=(dSiRm
− dSiRn

)/c

τSi
= [τSiR12

, τSiR13
, . . . , τSiRmn

, . . . , τSiR(M−1)M
] (20)

where dSiRm
represents the distance between Si and Rm, and

c denotes the speed of sound. The difference of features of two
sound sources Si and Sj is

τd = |τSi
− τSj

| (21)

where Euclidean distance is used.
Corresponding to the microphones array mentioned in the

last part of this section, the following properties of τd can be
obtained as:

1) If τd = 0 i.e., τSi
= τSj

, then αi = αj , di = dj and
hi = hj or −hj .
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Fig. 2. Relationship between τSi
and τSj

.

2) The relationship between τd and |si − sj |:

τd ∝
{
|αi − αj |, for |αi − αj | ≥ 180◦

360− |αi − αj |, for |αi − αj | ≥ 180◦
(22)

τd ∝
{
|di − dj |, for di ≥ dj
di − dj , for di ≥ dj

(23)

τd ∝
{
|hi − hj |, for 0 ≥ hi ≥ hj

hi − hj , for hi ≥ hj > 0.
(24)

Property 1) means a specific time difference feature corre-
sponds to two sound sources that are symmetric with respect
to the plane of microphone array; however, the negative hj is
discarded in applications of HRI. In other words, therefore, the
relationship between time difference feature and sound source
is one-to-one correspondence. Property 2) reveals the positive
relationship between the difference of features and the differ-
ence of azimuth, horizontal distance, and height, respectively.
It can be concluded that the farther the distance of two sound
sources is, the greater the difference of two features of these
two sound sources becomes. This relationship is shown in
Fig. 2, where αi, di and hi are selected randomly, and it can
be intuitively confirmed that they are representative.

C. SGM Localization Algorithm

As mentioned in Part B of this section, one sound source cor-
responds to one time difference feature, vice versa. Moreover,
two adjacent sound sources own a pair of similar features. The
horizontal plane can be divided into many grids with a certain
size. The partition of horizontal space is shown in Fig. 3. Those
sound sources in the same grid are adjacent, whose features are
similar. On the contrary, features of two different grids that are
far from each other will differ largely.

Using Monte Carlo method, a Gaussian mixture model
(GMM) will be constructed as the template for each grid based
on time difference feature. For an arbitrary grid, its azimuth
distributes from α1 to α2, its horizontal distance distributes
from d1 to d2, and its height distributes from h1 to h2. The
GMM of this grid can be trained offline as Algorithm 2, where
N denotes the number of random sound sources in a grid, which

Fig. 3. Partition of horizontal space.

should be big enough to guarantee that random sound sources
can cover the whole grid in probability.

Algorithm 2 Training GMM

1: Initializing a GMM
2: for n = 1 to N do
3: Generating an azimuth α randomly, α ∼ U(α1, α2).
4: Generating a horizontal distance d randomly, d ∼

U(d1, d2).
5: Generating a height h randomly, h ∼ U(h1, h2).
6: The coordinate of this random sound source

[xn, yn, zn] = [dcos(α), dsin(α), h].
7: Time difference feature τn can be computed using (20).
8: end for
9: Training GMM using τ1, τ2, · · ·, τN .

Then, the problem of localization can be changed to find
which grid does the sound source distribute in, with time
difference feature τ given. This problem can be described as

Gs = argmax
G

P (G|τ)

= argmax
G

P (τ |G)P (G)

P (τ)
∝ argmax

G
P (τ |G) (25)

where G denotes a grid, and Gs represents the grid of a
sound source. This equation indicates that the solution of lo-
calization is the grid which has the greatest likelihood value.
All of the likelihood values between the GMM of each grid
and the time difference feature of an unknown sound source
should be computed, then the greatest corresponds to the sound
source grid.

How to determine the size of a grid? Unlike traditional
clustering algorithm, FOC-based time difference features uni-
formly distribute in the whole space ignoring the effect of
feature resolution. Therefore, each grid must have identical
size in the sense of feature resolution. Obviously, there is no
upper bound for the size of a grid. Theoretically, any size is
correct. However, measurement error of time difference feature
is inevitable. The feature difference of two opposite boundary
of a grid indicates the sensitivity of this grid to measurement
error, and the smaller the difference is, the more sensitive. In
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other words, the minimal size of this grid depends on the level
of average measurement. If the size is smaller than the valid
minimal size, localization results will deviate from real value.
Hence, the feature difference of two opposite boundary should
be greater than the average measurement error. In particular, the
sensitivities are different between each dimension, furthermore,
between different areas of one dimension.

As well-known, geometric positioning method solves lo-
calization problem from time difference to location inversely.
The solution of inverse problem has many problems such as
nonlinear and high computational complexity. In comparison,
SGM method avoids the solution of inverse problem. In addi-
tion, it weakens those dimensions that we are not interested in,
such as the height dimension. Furthermore, it does not need
the assumption of far field or near field. This method is more
powerful and efficient than geometric positioning method in
some way.

D. Valid Feature Detection

The wrong time difference will deteriorate the accuracy of lo-
calization, which should be removed. Furthermore, in applica-
tions of HRI in noisy environment, if a wrong localization takes
place, it is reasonable that the speaker calls the robot again.
Valid feature can be detected from one recording or multiple
recordings generated at the same sound source position.

Here, τimn denotes the time difference of the ith recording
between m−microphone and n−microphone. Theoretically,
the following equation can be established:

τimn = τjmk + τjkn k ∈ [1,M ], j ∈ [1, I] (26)
τimn = τjmn j ∈ [1, I] (27)

where M denotes the number of microphones and j denotes the
number of recordings.

Set Γimn is defined as

eijmnk = |τjmk + τjkn − τimn| k ∈ [1,M ], j ∈ [1, I]

eijmn = |τimn − τjmn| j ∈ [1, I]

Γimn =(eijmnk|eijmnk > th) ∪ (eijmn|eijmn > th) (28)

where th is a threshold empirically determined by the average
measurement error of time delay. If eijmnk is greater than th,
(26) will have discrepancy. Similarly, if eijmn is greater than th,
(27) will have discrepancy. The element number of set Γimn is
qimn. Then, the validity of τimn can be defined as

τimn is

{
valid, for qimn ≥ TH
invalid, for qimn ≥ TH.

(29)

where TH is a threshold decided by the number of microphones
M and the number of recordings I , and is set to M × I/2. If
the number of unmatched pairs defined by (28) is greater than
TH , the time difference τimn is considered to be invalid.

Finally, computing the mean value of the valid time differ-
ences of multiple recordings, these time differences correspond
to the same microphone pair, which is shown as

τ ′mn =
1

J

∑
validτimn

τimn (30)

where J represents the number of valid τimn. If J equals
0, τmn is invalid, and it will be removed. All valid τ ′mn

are combined into a new feature vector τ ′. The procedure of
detecting the valid feature is shown in Algorithm 3. The input of
this algorithm is time difference features of multiple recordings
generated at the same position, and the output is the combined
valid feature.

Algorithm 3 Valid Feature Detection

1: Input τimni = 1, · · · , I; m,n = 1, · · · ,M
2: qimn ← 0
3: for j = 1 to I do
4: for k = 1 to M do
5: if |τimn − τjmn| > th then
6: qimn ← qimn + 1
7: end if
8: if |τjmk + τjkn − τimn| > th then
9: qimn ← qimn + 1
10: end if
11: end for
12: end for
13: J ← 0
14: for i = 1 to I do
15: if qimn ≥ TH then
16: τimn is valid
17: J ← J + 1
18: else
19: τimn is invalid
20: end if
21: end for
22: if J �= 0 then
23: τ ′mn ← 1/J

∑
validτimn

τimn

24: else
25: τmn will be removed
26: end if
27: return τ ′mn

IV. SSL SYSTEM FOR HRI

In this section, a speaker localization system in applications
of HRI is constructed. Some issues of SSL for HRI are given
in Part A. Then, the size of spatial grid is determined by the
average measurement error of time difference features in Part
B. In Part C, decision tree is proposed to reduce the number of
times of template matching.

A. SSL for HRI

A microphone array with a cruciform plane has been shown
in Fig. 1. In HRI, the microphone array is placed on a horizontal
plane of a mobile robot with a certain height, and the distance
between two adjacent microphones is set to 0.4 m. The position
of sound source relative to the mobile robot should be localized,
including azimuth and horizontal distance of a speaker, while
the vertical height of a speaker is not taken into account.
The azimuth should be localized as accurately as possible,
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Fig. 4. Spatial distribution of feature difference for horizontal distance, height and azimuth. (a) Horizontal distance. (b) Height. (c) Azimuth

and the dangerous area and safe area of the robot should be
distinguished well, where the boundary between dangerous area
and safe area is set to 1.5 m roughly in our system.

B. Size of Spatial Grid

In order to determine the minimal size of the spatial grid, the
average measurement error of time difference feature should be
taken into account. Considering the microphone array model
mentioned in Part A of this section, here, the average mea-
surement error is surveyed as ε = 0.8× 10−4s based on lots of
sensor data. Fig. 4 shows the feature difference of two opposite
boundary of a grid with a specific azimuth, horizontal dis-
tance, and height size, respectively. Fig. 4(a) shows the feature
difference in the whole horizontal distance and height space
with a horizontal distance size Δd = 0.6m as an example.
Obviously, it is approximately isotropic in azimuth dimension,
so an arbitrary azimuth is representative, such as α = 30◦ here,
the same below. In each area, the plane with feature difference
ε can judge whether it is reasonable that the size of horizontal
distance is set to Δd or not. The size of horizontal distance
of those areas below the plane cannot be equal to or less than
Δd. Fig. 4(b) shows the feature difference with a height size
Δh = 0.1m. Fig. 4(c) shows the feature difference with an
azimuth size Δα = 2◦. Similarly, the size of height and azimuth
of those areas below the plane cannot be equal to or less than
Δh and Δα. It can be seen that horizontal distance and height
are more sensitive in far horizontal distance area, azimuth is
more sensitive in near horizontal distance area, and the variety
of sensitivity is small between different heights. A reasonable
size of a grid in each area can be determined by many feature
difference figure with different size of each dimension. For
example, considering horizontal distance, the feature difference
with different horizontal distance size is shown in Fig. 5, where
azimuth and height are set to 30◦ and 0.5 m, respectively.

In addition, for HRI applications, the azimuth size of spatial
grid should be set as small as possible, and the horizontal
distance size of spatial grid should be determined based on the
dangerous area of the mobile robot. It is isotropic in azimuth
dimension, which means the feature resolution has no differ-
ence in azimuth space. Hence, the azimuth of each grid should
be identical. Considering the aperture of microphone array,
the boundary between far-field and near-field is in the range
of 1.5 ∼ 2.5 m. Different from the azimuth dimension, the

Fig. 5. Feature difference of horizontal distance.

Fig. 6. Decision tree for SGM method.

greater horizontal distance is, the smaller the feature resolution
becomes. Thence, the grid that has greater horizontal distance
should be bigger, and vice versa. In the far-field area, because
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Fig. 7. Flowchart of SSL algorithm.

of the planar wavefronts, time differences of those sources
with different horizontal distance will be almost the same.
Therefore, the far-field area should be in the same gird. We
are not very interested in the height of the sound source, which
is unimportant for most applications. In summary, the minimal
size of azimuth is set to 1◦. Taking into account the body size
of a robot, the horizontal distance is divided into two parts:
NEAR 0.5 ∼ 1.5 m and FAR > 1.5m, which correspond to
dangerous region and safe region for human, respectively. The
whole height space is treated as one part.

C. Decision Tree for SGM

The computational complexity would be very high if too
many grids are divided, since all of the grids must be matched
with the time difference feature of the unknown sound source.
As mentioned above, the azimuth is divided into 360 parts,
and the horizontal distance is divided into two parts. A total
of 360× 2 = 720 likelihood values should be computed. In
contrast, as shown in Fig. 6, decision tree is used. The number
of likelihood values computed becomes 2 + 2 + 2 + 3 + 3 +
5 + 2 = 19. First, a GMM should be trained for each node
of the tree offline, which is highly time consuming. For those
nodes of the first seven layers, the horizontal distance is treated
as one part. In the 8th layer, the azimuth size of each grid is
1◦. Then, in the stage of localization, the likelihood value is
computed layer by layer from the root of the tree to the leaf, just
like the trajectory from the root to the leaf of NEAR as shown
in Fig. 6. In each layer, all children of the current node are
matched with the time difference feature of an unknown sound
source, then the sound source will be located to the subgrid
whose likelihood value is the greatest. The time consumption
of localization step would greatly benefit from this localization
manner of from coarse to fine.

Overall, the flowchart of SSL algorithm mentioned above
can be concluded in Fig. 7. Valid feature detection method uses

one time difference feature τ1 or multiple features τ1, · · · , τm.
The GMM library is trained offline when the coordinate of
each microphone is given. This library includes those templates
corresponding to all of the nodes of decision tree.

V. EXPERIMENTS AND ANALYSIS

In order to evaluate the effectiveness of FOC-based TDE
algorithm and SGM algorithm, lots of experiments of TDE and
SSL for HRI are carried out. First, experiments of TDE are
presented in Part A, in which speech signals with spatially
correlated Gaussian noise are tested. Then, in Part B, SSL
experiments for HRI are given, which are achieved in real noise
environments.

A. TDE

In each experiment, two sensor speech signals collected in
office environment are tested. Speech signals are collected by
two microphones with the sampling rate 44.1 kHz. The time
delay between the first signal and other is 50 sampling points.
Spatially correlated Gaussian noise are added into speech sig-
nals with certain SNR. Time delay of Gaussian noise between
the first signal and other is 30 sampling points. In addition, an-
other kinds of environmental noise, namely non-Gaussian noise
or spatially uncorrelated noise, also exist in office environment,
such as computer fans noise. The average signal to environ-
mental noise ratio is detected as 12 dB. For convenience, SNR
denotes the signal to spatially correlated Gaussian noise ratio
below. In total, 600 sets of different speech signals are tested,
and Gaussian noise are also different in each set. The duration
of each speech signal is about 1s, which are segmented with
length 93ms and 50% overlap. For comparison, GCC method
with PHAT weighting function in [11] and time domain FOC
method in [24] are also tested, which are, respectively, named
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Fig. 8. 20 overlapped time delay plots of GCC, TFOC, and SFOC versus time
(sampling point) with SNR 5 dB.

TABLE I
TIME DELAY ESTIMATION CORRECT RATE

TABLE II
SELECTION OF MIXTURE NUMBER

as GCC-PHAT and TFOC here. Our spectrum domain FOC
method is named as SFOC here.

Fig. 8 shows the 20 overlapped plots of GCC-PHAT, TFOC
and SFOC versus time (sampling point) with SNR 5dB. These
20 plots is randomly selected from 600 time delays. Obviously,
GCC-PHAT has a wrong peak at the time delay of Gaussian
noise with sampling point 30. TFOC and SFOC have correct
peak at the 50th sampling point. However, TFOC has higher
variance and confused peaks at neighboring sampling point of
correct peak, which bring about bigger estimation error.

Wrong estimations brought by Gaussian noise are always
around the peak of noise time delay, thus estimation correct
rate is tested: If estimation result is around the time delay of
speech signal, it is correct. Otherwise, it is wrong. Tables I
and II shows the estimation correct rate versus SNR based on
600 sets of signals. It can be seen that the performance of GCC-
PHAT dramatically declines as the intensity of Gaussian noise
increases. TFOC and our method have similar correct rate.
Because of the limited sample number, the probability distribu-
tion of noise deviates from Gaussian distribution more or less
[37], which leads FOC of noise unequal to zero. Therefore, the
performance of TFOC, SFOC will also slightly decline when
SNR is less than 0 dB. The good performance shows that FOC-
based method can suppress spatially correlated Gaussian noise
effectively.

Fig. 9. Estimation mean error of TFOC and SFOC.

Fig. 10. Mobile robot and microphone array.

The estimation mean error (ME) is tested: the average er-
ror between estimation value and real value, which can be
computed as: ME = (

∑N |D◦ −D|)/N , here D′, D, and N
denote the estimation value, real value, and estimation times,
respectively. In this experiment, D = 50 and N = 600. Fig. 9
shows the estimation ME of three methods versus SNR. It is
obvious that SFOC has smaller estimation error than TFOC
when they are less affected by Gaussian noise, such as 5 dB,
10 dB and “no noise.” The estimation error of GCC-PHAT is
great because of its poor estimation correct rate. However, if
Gaussian noise do not exist, as “No noise,” GCC-PHAT gets
smaller estimation error than TFOC.

B. Speech SSL for HRI

1) Configuration of Experimental Environments: A mobile
robot and a microphone array designed by our lab are shown
in Fig. 10. The microphone array is placed on the shoulder of
the robot with a height of 1 m. The mobile robot works in a
hall, semi-door environment, with a size of 8 m × 8 m. There
are various kinds of noise in this acoustic environment, such
as mechanical noise and electrical noise of the mobile robot,
air-conditioning noise, computer fan noise, outdoor noise, etc.
Four microphones are used for the sampling of speech sound,
and the sampling rate is 44.1kHz.

2) SSL for HRI: In this experiment, the mobile robot is
placed in the center of the hall, and the sound source to be
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TABLE III
AZIMUTH LOCALIZATION CORRECT RATE. TIME DIFFERENCE FEATURE CALCULATED BY GCC-PHAT, TFOC, AND SFOC ARE

TESTED WITH DIFFERENT SIGNAL TO SPATIALLY CORRELATED GAUSSIAN NOISE RATES

localized is placed on another 120 positions in the vicinity
of microphones array, with the azimuth of every 15◦ and the
distance of 1, 1.5, 2, 3, 4 m from the center. Where 1 and 1.5 m
are in the near-field area, 2, 3, and 4 m are in the far-field
area. These sensor data are represented as Near-Field and Far-
Field below, respectively. In real noise environments, owing
to the attenuation of source signal, the greater the distance
between the sound source and the microphone array is, the
lower overall SNR of sensor signals will be. The sensor signal
to environments noise ratios of Near-Field and Far-Field are
detected as 13 dB and 10 dB, respectively. In each position,
21 groups of speech data emitted from three speakers are
recorded, and the height of these speakers are different. The
content of speech is Chinese words “dingwei,” “pengpeng,”
and “guolai” which mean “locate,” “Robot’s name,” and “come
here,” respectively. In total, 120× 21 = 2520 sets of data are
tested for each experiment.

The localization accuracy of azimuth is 1◦, and the azimuth
localization correct rate has three kinds of situations, the differ-
ence between localization result and real value is less than 5◦,
10◦, and 15◦, respectively. The horizontal distance is divided
into two parts: NEAR 0.5 ∼ 1.5 m and FAR > 1.5 m.

The number of mixture components of GMM affects the lo-
calization performance. The azimuth localization performance
with varying mixture number is shown in Table II. In this
experiment, the basic SGM method and time delay feature
based on FOC spectrum are used, and those sensor data of
Near-Field and Far-Field are all tested. Obviously, the best
performance is obtained with four mixtures. As a result, the
number of mixture of GMM is set to 4.

In theory, FOC can completely suppress spatially correlated
Gaussian noise. In the scene of HRI, there are two kinds of
noise in the hall: spatially correlated Gaussian noise and others.
The former includes air-conditioning noise, and so on, and
the latter consists of all other kinds of environment noises. A
loudspeaker is used as the point Gaussian noise source recorded
from an air-conditioning, with azimuth 7.5◦, horizontal distance
1.5 m, and height 1.5 m, which is used to generate spatially
correlated Gaussian noise, and it is convenient to control the
noise intensity. In this experiment, three kinds of noise intensity
are tested, namely No noise, weak noise with average SNR
25 dB, and strong noise with average SNR 0 dB. Table III
shows the azimuth localization results. For comparison, GCC-

PHAT method and TFOC method are also tested. It can be seen
that the localization performance of Far-Field is worse than
Near-Field owing to the larger environmental noise. For all the
experimental conditions, TFOC gets greater localization error
than SFOC due to its larger TDE error, particularly in Far-
Field area. Which can be observed from the results of 5◦ and
10◦. Taking into account the results of No noise, the correct
rates of GCC-PHAT and SFOC are about the same. When the
signal to spatially correlated Gaussian noise rate is 25 dB,
the localization performance of GCC-PHAT method declines
dramatically. On the contrary, the performances of TFOC and
SFOC method are almost equivalent with the situation of No
noise. It is verified that FOC-based method is more effective
for TDE than GCC-PHAT method when spatially correlated
Gaussian noise exists. As mentioned in Part A, the probability
distribution of noise deviates from Gaussian distribution more
or less. Consequently, the localization performances of TFOC
and SFOC methods also slightly decline as Gaussian noise
increases, which can be seen from the experimental results of
0 dB. SGM localization method is used in this experiment.

By adjusting the size of grid, SGM method can handle the
problem of switching between far field and near field easily and
can weaken some dimensions selectively. For comparison, the
nonlinear least squares error criteria JDOA presented in [33]
is tested for DOA estimation, which estimates the direction of
arrival of sound source. In this experiment, for JDOA, all the
six time differences are used for increasing the robustness of
DOA, and the variance of TDOA error of each sensor pair are
assumed to be identical. In addition, the closed-form spherical
LS source localization method presented in [32] is also tested,
which can estimate the location of sound source. In our system,
only three time differences of four microphones are used for
localizing a source in 3-D space. Therefore, the estimator in
[32] is equivalent to spherical intersection estimator in [29].
Table IV shows the azimuth localization correct rate of JDOA,
SX and SGM method. The loudspeaker that generates spatially
correlated Gaussian noise is turned off in this experiment. It is
obvious that JDOA and SX method have greater localization
error than SGM, which can be seen from the correct rate of
5◦. The speakers have different height with the horizontal plane
of microphone array. Therefore, for the 3-D sound source, the
localization error will emerge when the 2-D planar array is
used. However, it can be observed from the results of 10◦ that
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TABLE IV
AZIMUTH LOCALIZATION CORRECT RATE OF JDOA , SX AND SGM METHOD

TABLE V
HORIZONTAL DISTANCE LOCALIZATION RATE

these errors is less than 10◦ in most cases. On the contrary,
SGM method can weaken the height dimension selectively. The
performance of JDOA for Near-Field is worse than SGM. The
wavefront of near-field source deviates from the planer wave-
front. The performance for Far-Field of these two methods are
similar. SX method has good performance for Near-Field with
the localization error 10◦ and 15◦. However, its performance
is worse than SGM, which is probably due to the fact that the
microphone is too limited and SX method is more sensitive to
time delay error in the far-field area. SGM method can switch
between far-field and near-field naturally.

For two different sound sources, azimuth is the dominant fac-
tor, which means the difference of their time difference features
is mainly determined by the difference of their azimuth. On
the contrary, horizontal distance is the secondary factor, which
is more sensitive to the measurement error of time difference
feature. Thence, the horizontal distance localization result de-
pends on the azimuth localization result to a certain extent.
The horizontal distance localization results of SGM method are
shown in Table V. It can be found that the localization perfor-
mance of horizontal distance is approximately proportional to
the performance of azimuth; however, it is more lower because
of the high sensitiveness to the measurement error. The grid
of Near with the horizontal distance 0.5 ∼ 1.5 m, which is
equivalent to the statement that the average localization error
of this grid is 0.75 m. For a comparison, the horizontal distance
error for Near-Field of SX method is 0.54 m. In addition, the
average horizontal distance error for Far-Field of SX method is
greater than 2.0 m, which has little practical significance.

Decision tree reduces the matching times between the GMM
of each grid and the time difference feature dramatically. As
mentioned in Section IV, the matching times are reduced from
720 to 19 for each localization, and the matching stage takes
40ms reduced from 420ms in our experiments.

Removing those wrong time differences can improve the
performance of SGM method. In particular, when a wrong lo-

TABLE VI
AZIMUTH LOCALIZATION RESULTS USING VALID FEATURE DETECTION

METHOD. 1, 2, AND 3 RECORDINGS GENERATED BY THE SAME

SOUND SOURCE AT THE SAME POSITION ARE USED

FOR VALID FEATURE DETECTION

calization takes place, it is reasonable that the speaker calls the
robot again. Therefore, multiple features generated by the same
sound source position can be used for valid feature detection.
Table III shows that the performance of SFOC is about the same
between No noise and 25 dB. Therefore, only the sensor signals
of No noise and 0 dB are tested in this experiment. Azimuth
localization results SFOC using valid feature detection method
are shown in Table VI and VII, where valid feature detection
method is named as VFD, and 1, 2, and 3 recordings are
tested, respectively. It can be seen that VFD method improves
the azimuth localization performance markedly, and the more
recordings are, the better the performance will be. However,
too many recordings are not available in applications of HRI,
generally, no more than three recordings are used. It is effective
particularly for lower SNR environment. If valid features are
used, the performance of azimuth localization with SNR 0 dB
is about the same as the case of No noise. Table VII shows
the horizontal distance localization results using valid feature.
Once again, VFD method improves the performance effectively.
However, unlike azimuth localization results, the improvement
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TABLE VII
HORIZONTAL DISTANCE LOCALIZATION RATE USING VFD METHOD

Fig. 11. Localization results with signal to spatially correlated Gaussian noise
ratio 0 dB. From 1 to 6 of the abscissa represent GCC-PHAT, TFOC, SFOC
without VFD, SFOC with one recording, two recordings, and three recordings
VFD. Mean localization rate is used.

caused by the increase of recordings is not apparent because
of the considerable localization error. The threshold th men-
tioned in Section III is set to 0.23ms empirically, and the
threshold TH is set to M × I/2 = 2I , here the number of
microphones is M = 4. Generally speaking, more than 94.87%
average azimuth correct rate with error less than 5◦ and more
than 85.17% average horizontal distance correct rate can be
obtained, respectively. It can effectively estimate the bearing of
sound source and judge whether the sound source is standing in
dangerous area.

It is easy to observe localization results with multiple lo-
calization methods from Fig. 11. The localization performance
depends on the accuracy of time difference feature extracted by
these methods. The abscissa 1, 2, and 3 indicate the effective-
ness of three TDE method in the case that spatially correlated
Gaussian noise exist. The abscissa 3 and 4 indicate the effec-
tiveness of valid feature detection method. The abscissa 4 to
6 show that the increase of the recordings obviously improves
the localization performance of azimuth, but not horizontal
distance.

Comparing with geometric positioning method, it is proved
above that our SGM method can localize far-field sound source
more effectively. However, the localization performance will
deteriorate along the increasing of environmental noise. To test
the localization ability of our system for instant sound source
that has lower signal to environmental noise ratio, another
24 positions with the azimuth of every 30◦ and the distance of
6, 8 m from the robot are tested. Because of the attenuation
of source signal, the average signal to environmental noise
ratios of these two distance are detected as 6.8 dB and 4.0 dB,

TABLE VIII
AZIMUTH LOCALIZATION RATEF OR DISTANT SOURCE

respectively. In each position, ten groups of speech data emitted
from two speakers are recorded. In this experiment, SFOC,
SGM, and VFD methods are used. In addition, the spectral
weighting (SW) function presented in [35] is also used for
suppressing stationary environmental noise. Table VIII shows
the azimuth localization performance with localization error
less than 15◦. Owing to the non-Gaussian environmental noise,
the performance of basic SFOC+SGM method is bad for 6 and
8 m. SW can significantly improve the localization rate for all
the three distances by reducing the weight of those frequencies
affected by stationary noise. VFD method is effective for 4 and
6 m. In particular, for 6 m, the correct rate increase quickly
if two or three recordings are used. However, VFD method
improves the performance of 8 m sparingly, which is probably
due to the fact that the time differences for the new valid feature
are too limited. The correct rate of 6 m can meet the demand of
HRI roughly; however, it needs multiple recordings. In general,
for speaking loudly in a normal way, our localization system
works well within 5 m.

3) Application of SSL System: In the scene of HRI, human
call the mobile robot to attract its attention, then the audi-
tory system collects speech signals and gives feedback to the
speaker. Auditory system consists of two subsystems: Speech
recognition subsystem recognizes speaker-independent speech
commands in real noise environments, and SSL subsystem
localizes the relative direction and range of a speaker with
respect to the robot.

In this application, the mobile robot works in the hall men-
tioned above with 3 ∼ 5 persons around it. Speech commands
include Chinese words “zhuyi” and “guolai” which mean “pay
attention” and “come here.” First, when a speaker call the
robot, the meaning of command and the position of sound
source can be obtained. Then the robot turns to the speaker,
and the vision-based system is also used to detect the direction
of human accurately, such as “Body Detection” and “Hands-
Raising Detection.” In addition, if the horizontal distance is
localized as NEAR which means that the speaker stands in
the dangerous area, robot calls attention to him/her that “Pay
attention, you are standing in the dangerous area.” Second,
the robot will stay put if the command is “zhuyi.” Whereas,
if “guolai” is called and the horizontal distance is FAR, robot
will move 1 m toward the speaker. In this step, “guolai” can be
called several times to get an appropriate distance between the
speaker and the robot. Finally, for another interaction tasks, the
robot faces the speaker directly with a suitable distance. For
the friendliness of HRI, only one speaker can call the robot
within a certain period of time, which indicates that the source
speech signals are sparse in time domain. If multiple sound
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TABLE IX
LOCALIZATION PERFORMANCE

Fig. 12. Application of sound source localization system.

events occur simultaneously, those speech segments that just
have one peak in the envelope of formula (18) are used for
localization.

100 interaction tasks are tested, including 50 near-field tasks
and 50 far-field tasks within 5 m. The target of each task
is that, through the rotation and motion of the mobile robot,
speakers stand in the region with azimuth −23◦ ∼ 23◦ (cam-
era’s detection range of our system) and horizontal distance
1.5 m ∼ 2.5 m (a suitable distance for interaction). Near-field
interaction task needs once localization to cumulate the rotation
angle. Far-field interaction task needs several localization tasks
to adjust the distance between the robot and speakers. In total,
167 localization tasks are implemented for these 100 interaction
tasks. For each localization, the speaker can call 1 ∼ 3 times if
the wrong localization (azimuth localization error greater than
23◦) occurs. Table IX shows the performance of localization
tasks. The average azimuth error is not very accurate due to the
measurement error of real value. The average time consumption
just refer to the SSL function. The failure denotes the local-
ization task that the localization results are all wrong for three
times. In this experiment, SW, SFOC, SGM, and VFD methods
are used. The scene of this application for HRI is shown in
Fig. 12.

VI. CONCLUSION

In this paper, a novel SSL method for HRI based on the FOC-
based time difference feature and SGM method is proposed.
FOC spectrum and cross spectrum are derived. The multiplica-
tive relationship of each frequency spectrum in FOC spectrum
guarantees the additive relationship of each phase spectrum,
which indicates the independence of multiple time differences
from one signal to the others. Then, a TDE method for speech
signal is proposed based on FOC spectrum, which can remove

the influence of spatially correlated Gaussian noise. In addition,
it is more robust than time domain FOC-based method by
weakening confused peaks. However, the performance will
decline as the Gaussian noise increases. This method is invalid
to spatially uncorrelated noise and non-Gaussian noise.

SGM method is proposed for localization step. First, it avoids
the difficulty of the solution of inverse problem, which makes
geometric positioning method difficult in some situation. Then,
it can handle the problem of the switch between far field and
near field easily. In addition, it can weaken some dimensions se-
lectively. Therefore, it can solve some problems that geometric
positioning method cannot. However, time difference feature is
too sensitive to the measurement error of horizontal distance,
which brings about the low resolution and bad localization
performance of horizontal distance. Hence, a more effective
feature should be investigated, such as amplitude difference.
Valid feature detection method removes those wrong time
differences and improves localization performance. Decision
tree reduces the number of times of template matching greatly.
Experiments of TDE and SSL for real-time HRI are presented
in real environments, which proves the effectiveness of these
algorithms for speech sound source with spatially correlated
Gaussian noise.
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