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Robust Acoustic Localization Via Time-Delay
Compensation and Interaural Matching Filter

Jie Zhang, Student Member, IEEE, and Hong Liu, Member, IEEE

Abstract—Acoustic localization is an essential technique in
speech capturing, speech enhancement, video conferencing, and
human–robot interaction. However, in practical situations, lo-
calization has to be performed in abominable environments,
where the presence of reverberation and noise degrades the
performance of available position estimates. Besides, the designed
systems should be adaptive to locomotion of targets with low
computational complexity. In the context, this paper introduces
a robust hierarchical acoustic localization method via time-delay
compensation (TDC) and interaural matching filter (IMF). Firstly,
interaural time-delay (ITD) and interaural level difference (ILD),
which are cues involved in first two layers, respectively, are yielded
by TDC all at once. Then, a novel feature named IMF, which can
eliminate the difference between binaural signals, is proposed in
the third layer. The final decision making is based on a Bayesian
rule. The relationships among the three layers are that the former
layer provides candidate directions for later ones such that the
searching space becomes gradually smaller to reduce matching
time. Experiments using both a public database and a real scenario
verify that TDC and IMF are robust for acoustic localization, and
hierarchical system has less consumption time.
Index Terms—Hierarchical acoustic localization, time-delay

compensation, interaural matching filter.

I. INTRODUCTION

A COUSTIC source localization aims at estimating the
direction of a sound source by using the collected sig-

nals measured from specific acoustic sensors. It has played
an important role in various fields such as speech capturing,
enhancement, hearing aids, hand-free telephone devices, video
conferencing, intelligent human-robot interactions (HRI), etc.
Environmental perception and interpersonal communication
strongly depend on hearing, where there are three important
and difficult issues concerning acoustic localization: 1) How
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to accurately localize any kind of speech or sound source? 2)
How to localize several different sound sources simultaneously,
and 3) How to track one or several moving sound sources
[1]? For these, Bogaet et al. evaluated the influence of three
multi-microphone noise reduction algorithms on the ability
to localize sound sources by users of hearing aids [2]. Chu
et al. described a voice source localization algorithm used in
the PictureTel automatic camera pointing system for video
conference [3]. Wang et al. presented a source localization
system for robots and navigation based on steered response
power-phase transformation algorithm [4]. Ishi et al. evaluated
a MUSIC-based real-time sound localization system in real
noisy environments, which was available for multiple sound
sources [5]. Hu et al. localized the position of a mobile robot
and multiple sound sources simultaneously [6].
There are several kinds of well-known methods for source

localization based on a microphone array, including: 1) Direc-
tional technologies based on high-resolution spectral estima-
tion; 2) Controllable beamforming technologies by maximizing
output power; 3) Approaches based on time difference of arrival
(TDOA), which requires lower time consumption. As for HRI
or video conferencing scenarios, TDOA-based methods would
be more suitable as the azimuthal localization and the rotation
of camera should be in real time.
However, for many applications small-sized sensor arrays are

required for the localization systems because of a demand for
easily-carrying and low computational complexity. As a result,
dual-channel acoustic localization has become popular in re-
cent decades. One of the primary abilities of the human au-
ditory system is to localize sound source by two ears. Thus a
desirable goal of robotic localization is pinpointing the sound
sources swiftly and accurately only by two sensors. Similar to
the fact that we cognize sound position by loudness, tone and
orientation, the two significant binaural (interaural) cues based
on differences in time and level of the sound arriving at two ears
should be used. These are interaural time difference (ITD) and
interaural level differences (ILD). The ITD, which is caused by
the different distances from sound source to sensors, is com-
monly used in the TDOA-based approaches, and ILD is often
brought about by the distrinct attenuation ratios.
Since the “Duplex Theory” [7] and cochlear model [8] were

proposed, a large amount of binaural localization algorithms
have been developed. Viste et al. proposed a method based on
the short-time Fourier transform (STFT) spectra of binaural
signals for combined evaluation of ITD and ILD for each indi-
vidual spectral coefficient to localize sources in the horizontal
plane [9], [10]. Birchfield et al. investigated the possibility
of applying ILD to computer-based systems and involved the
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Fig. 1. Block diagram of this framework. The upper training is an offline process providing templates for localization. For convenient drawing, IC before TDC
has been ignored and ILD is put after ITD. Indeed, both ITD and ILD are resolved from TDC.

inverse-square-law to localize a sound source by the received
energy of two microphones [11]. Cui et al. reported a dual-mi-
crophone geometrical localization method using time-delay
estimate (TDE) and ILD technique [12]. May et al. learned the
dependency of ITD and ILD on azimuth by azimuth-related
Gaussian mixture models (GMMs) and a probabilistic model
was presented for localization based on a binaural auditory
front-end [13]. Youssef et al. addressed a binaural sound source
localization method using auditive cues and vision for robotic
humanoid context [14].
In addition, among the numerous algorithms, several are re-

lated to our work. For example, Li et al. introduced a Bayes-
Rule based three-layer hierarchical system for binaural sound
source localization [15]. Along with the similar hierarchical ar-
chitectures like Finger et al. [16], experiments show that the
hierarchical system can reduce time consumption effectively.
Willert et al. proposed a biologically inspired binaural sound
localization system, where binaural cues are extracted using
cochleagrams generated by a cochlear model [17]. Jeub et al.
proposed an interaural coherence model of the room impulse
response (RIR) and dual-channel Wiener filter for binaural cues
preserving dereverberation [18]. Benesty et al. also have made
great contributions for binaural noise reduction using a micro-
phone array [19].
These methods are mostly based on the STFT spectra of the

input signals, and ILDs and ITDs are estimated for each spec-
tral coefficient. On one hand, ILD-based localization has a rel-
atively large standard deviation, especially at low frequencies.
On the other hand, ITD-based localization has smaller standard
deviation, but is ambiguous due to phase unwrapping in the
Fourier transform. By jointly evaluating these quantities, ILD
is used to resolve the ITD ambiguities to effectively improve
the azimuth estimates. Furthermore, most of these works de-
compose the binaural signals into perceptually motivated fre-
quency bands and estimate the interaural cues in these bands.
When several sources at different locations have significant en-
ergy within a given perceptual band, the resulting azimuth esti-
mates for that band will not, in general, correspond to any of the
actual azimuths of the sources. In some cases, therefore, it can
be advantageous not to be limited by the frequency resolution
of the human auditory system, but rather to estimate azimuths

in individual narrow frequency bands. Besides, the traditional
binaural cues estimates almost begin with the same standpoint,
such as TDE based on generalized cross correlation (GCC), and
ILD by logarithmic energy ratio directly. Also as to HRI sys-
tems, computational complexity is a vital element that needs to
be considered [20].
Accordingly, this paper presents a hierarchical acoustic local-

ization technique using time-delay compensation (TDC) and in-
teraural matching filter (IMF). As with acoustic cues estimates,
TDC is used to evaluate ITD and ILD instead of the traditional
methods. The proposed TDC foremost yields ITD and ILD con-
currently so as to make the realization of binaural cues preser-
vation more convenient. The interaural coherence (IC) [22] is
involved to select reliable signal frames to guarantee the va-
lidity and stability of ITDs. The TDC and IC mentioned here
are a refined and expanded version of a conference proceed-
ings paper [23]. Actually, TDC is an extended version of [25]
both in time domain and frequency domain. Then taking the
signal of left (right) ear as the input of a system and the other
as the target signal, we can design a filter to eliminate the dis-
parity between binaural signals and this is what the Interaural
Matching Filter means. Once the coefficients of IMF in all di-
rections are stored, the process of localization is simplified as
calculating the similarity between the unknown coefficients and
templates [24]. It is confirmed that IMF implies ITD and ILD,
and it can make sure the location of a sound source all by itself
in quiet circumstances. After the three cues are obtained, we
can first compute the probabilistic distribution of candidate az-
imuths by the crude ITD, then ILD is used to refine the former
candidates including elevations, and the similarity of IMFs is
prepared for decision making. The three layers are combined
by a Bayesian rule. Fig. 1 shows the block framework of our
method including offline training and online localization. Based
on head-related transfer functions (HRTFs), the mean value and
variance of ITDs and ILDs in each direction can be trained of-
fline as well as for the IMFs. Therefore, the localization space
shrinks gradually from the first to third layer referring to tem-
plates so that we can achieve lower computational complexity.
The experiments are carried out in both simulated enclosures
based on CIPIC database [27] and a real hall, where the speech
data is collected by two microphones in a 3D space.
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Fig. 2. (a) Signal model of binaural sound localization. For far field, the prop-
agation path of sound source to two eras are thought to be parallel. (b) The
interaural-polar coordinate system. The azimuth is the angle between a vector
to the sound source and the midsaggital or vertical median plane, and varies
from to . The elevation is the angle from the horizontal plane to
the projection of the source into the midsaggital plane, and varies from
to .

The rest of this paper is organized as follows: TDC and IMF
are introduced in Sections II and III, respectively. The hierar-
chical localization strategy is described in Section IV. Experi-
ments and analysis are shown in Section V. At last, some con-
clusions and discussions are drawn in Section VI.

II. TIME-DELAY COMPENSATION

A. Acoustic Cues Estimates
Considering the far field scenario in Fig. 2, the propagation

paths from the sound source to acoustic sensors are roughly par-
allel. Let denote a sound source signal, assuming that bin-
aural signals are counterparts of the sound source with time-
delay and attenuation to simplify analysis. We then attain

(1)

where and denote the attenuation factors, and are the
time factors from the sound source to the two acoustic sensors,
and are the interferences, respectively. Let us de-
fine interaural time-delay as

(2)

Therefore, taking the idea of time-delay compensation into
account, including time alignment and intensity compensation,
the relationship between binaural signals will be

(3)

where and denote the window function, attenuation
difference and the disparity of noises received by ears, respec-
tively. In fact, is also the error of TDC, and themost amazing
task is to make binaural signals without difference. From the
standpoint of noises, (3) can be replaced by

In an office environment, is usually thought as zero-mean
Gaussian noise. Hereby the variance of can be defined as

(4)

In this context, the parameters and can be estimated by
maximum likelihood estimation as follows

(5)

After setting this partial derivative to zero, namely interaural
level difference (ILD) can easily be solved as

(6)

where denotes the length of window. For practical usage, we
represent the logarithmic as ILD. As with time-delay , it
is difficult to compute from directly, but simplifies (4)
in the frequency domain instead, that is

(7)

where and are the Fourier transforms of vari-
ance and binaural signals processed by window function, re-
spectively, i.e.,

. Therefore, if

then can be formulated as

(8)

Setting to zero, for and are not equal
to zero, we obtain

(9)

where indicates the complex conjugate. Then, taking (9) back
to the time domain using the inverse discrete Fourier transform,
it can be shown as

(10)

where is the proposed GCC-TDC function, which rather
resembles the Roth weighting [26], [28] based on an optimal
filter with as the input and reference signals [29],
respectively. Thereout, can be estimated as

(11)

As a consequence, is the optimal time-delay with the
meaning of Minimum Mean Square Error (MMSE) criterion.

B. Interaural Coherence
Based on the aforementioned analysis, both ITDs and ILDs

can be yielded from the TDC estimator. Combined with (6),
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(10), we can draw a conclusion that although there is a mu-
tual relationship between ITD and ILD, has an influence on
the height of . On the contrary, heavily relies on the
time-delay, thus the stationary ITDs should be calculated first.
Hereby, interaural coherence (IC) is employed into GCC-TDC.
The energies of the left and right sensor are evaluated by recur-
sive averaging as

(12)

where marks the frame index with each frame of 5.8 ms dura-
tion. The smoothing factor is determined from time constant
and sampling frequency as ) [30]. Here the

IC function can be defined as

(13)

where is the cross-energy spectrum calculated by

(14)

In the following, only cues with above the empir-
ical threshold are meaningful, otherwise the frame is thought
to be unreliable and abandoned, i.e.,

(15)

Therefore, only when a frame is reliable, we can utilize the TDC
to estimate the ITD and ILD. Actually, the IC function acts as
a voice activity detector (VAD), which can effectively smooth
the binaural cues.
In fact, our TDE is a revised version of generalized cross-cor-

relation (GCC) based on interaural coherence like Roth
weighting. Fig. 3 illustrates the comparison of performance
between the proposed GCC-TDC and the typical GCC-PHAT.
It can be seen that both GCC-PHAT and GCC-TDC achieve rel-
atively accurate ITDs, yet the variance obtained by GCC-TDC
is smaller, because GCC-TDC is fundamentally in view of
minimizing variance, which brings about more stable ITDs.

III. INTERAURAL MATCHING FILTER

Apart from the classical ITD and ILD as acoustic cues, in this
section we will deduce another new binaural feature for local-
ization. In order to eliminate the disparity between the binaural
signal , we propose a scenario to compose an In-
teraural Matching Filter (IMF) shown in Fig. 4, whose task is
to project onto to make the error as small as
possible [31].
Let be the impulse response of the

IMF, and the frame length of is , the output
of the IMF is obtained from the convolution between and
as

(16)

Fig. 3. The comparison of performance between GCC-TDC (upper) and GCC-
PHAT (lower).

Fig. 4. Linear discrete time Interaural Matching Filter, which implies time-
delay and attenuation. Taking as the input of IMF and as the ex-
pectation is equivalent to the contrast situation in theory.

where denotes conjugate, defining the error function as the
output of the adder such that

At the same time, the cost function is defined as follow

(17)

where is the expectation operator. Here considering the
MMSE criterion to solve for the vector , we can obtain the
famous Wiener-Hopf equation

(18)

where is the autocorrelation of and is the
cross-correlation function, which has been calculated in the
TDC. If the signal received by left ear is set as

then the autocorrelation matrix of can be expressed as

...
...

...
...
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Similarly, the cross-correlation vector between the input and
expectation response is calculated as

Hence, the vector of IMF coefficients can be formulated as

(19)

Based on this, we can train offline the impulse response in
all directions using HRTFs or recorded speech, which include
the information of TDOA and energetic attenuation. Thereby
IMF is capable to represent a specified direction. Furthermore,
it is obvious that the similarity between two IMFs can describe
the spatial distance of two directions, which inspires that if the
IMF of received binaural signals matches certain one in the tem-
plates, the sound source is localized. Here a simple but effective
cosine-based similarity is adopted as

(20)

where and denote the inner product of vectors and 2nd
order norm. If are the coefficients from templates and
are the coefficients of received sound, will be the prob-
abilistic distribution of sound source in localization space. In
the training process, we can obtain the cost function and the av-
erage error function caused by binaural matching as Fig. 5 illus-
trates based on the CIPIC database including 1250 directions.
The subplots (b) and (d) on right panel are the corresponding
cost function and the average error function of Fig. 4, and the
subplots (a) and (c) depict the results of the contrary scheme,
where is taken as the input of IMF and as the
expectation. Theoretically, an IMF has the symmetrical prop-
erty for binaural signals, which means taking as the input
of IMF and as the expectation is equivalent to the con-
trary scheme. Both the two schemes lead to the bigger cost for
matching in the directions near to the right ear ,
and the bigger error happens in the areas near to the left ear

. However, apparently the cost and error
function of the latter are far severe, which is mainly caused by
the measurement error of the database. Additionally, the distinct
error will arise when taking advantage of the signals from long
distance to design IMFs, because minor signals are always dif-
ficult to be captured and processed. Yet to give an overall evalu-
ation and avoid bringing more saltatory cost and error function,
the former case will be a better choice. Therefore, we use
to input IMFs in this paper.
The impulse responses of IMFs in the time

domain are shown in Fig. 6 (When the azimuth , the
IMFs of 50 different elevations are embodied in (a). On the other
hand, when the elevation , the IMFs of 25 different az-
imuths are contained in (b).), from which we can see that the
coefficients of IMFs are sensitive to azimuth, because the mag-
nitude of plots in (b) are about 10 times to (a) intuitively. This
appearance implicitly reveals a presumption that IMF-based lo-
calization is more precise for azimuth than elevation.
The histograms of cosine similarity matrix of several

different directions are illustrated in Fig. 7. We utilize a musical

Fig. 5. The right column shows the cost function and the mean of error function
in Fig. 4. The left column depicts the response of contrary scheme, where take

as the input of IMF and as the expectation.

Fig. 6. (a) The impulse response of IMFs when the azimuthal degree is zero.
(b) The impulse response of IMFs when the elevation is zero.

period as the sound source. It can be seen generally ar-
rives at maximum value at the direction of sound source located,
that is, IMF can be involved for localization to some extend, but
not exclude that an ambiguity occurs when . Fur-
ther more, the peak-like bar is not easily distinguished when

so that it is necessary to combine other cues
with IMF as a joint for localization.

IV. HIERARCHICAL ACOUSTIC LOCALIZATION

For the sound source localization applications, the ITD, ILD
and IMF are needed to changed into angels . In the far
field, the propagation paths from the source to sensor arrays is
thought to be parallel. Considering the geometrical relation in
Fig. 1(a), it can be generated

(21)
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Fig. 7. The histograms of cosine similarity when the sound source is
located in different directions.

where is the distance between the two ears (microphones),
is interaural distance difference, is the speed of the sound in
air (344 m/s), and is the sampling frequency.
Generally, the acoustic localization is regarded as a pattern

classification indeed including two relative progresses, i.e.,
training and recognition. Training can be based on the HRTFs
or prepared auditory dataset, and recognition is online source
localization. Firstly, since the azimuth is monotonous to ITD
as (21) shows and for a certain azimuth, different elevation
shares the same time-delay generally, the mean of time-delay
and the corresponding standard deviation can be trained

for each versus all elevations. Let denote the number
of azimuth such that . Since each time-delay
matches one and only , therefore the probability of , named

, can also be trained before localization. When a new
sound source comes, the central azimuth is resolved by (21)
and an available azimuthal interval based on ITD is achieved
as follows:

Here we save the available interval as candidates with different
likelihoods instead of an accurate azimuth, because the areas
with larger standard deviation are likely discriminated to the ad-
jacent directions. Thus in order not to omit the potential solu-
tions, ITD is utilized as a coarse azimuthal localization in this
step. Visually, the candidates of 25 azimuths in CIPIC are de-
scribed in Fig. 8.
Then, if we consider the ILD similarly, the mean value
and standard deviation of ILDs can be trained for every

Fig. 8. The evaluated results of azimuth in the first stage. The solid dots repre-
sent the possible candidates, for example, if the actual azimuth is , the
evaluated azimuths are with dif-
ferent possibilities, and the possibility at is maximum.

direction. Let denote the number of elevation such that
. Based on the candidate azimuths in previous

stage, the probability of elevation and available interval of
are obtained as

Note that we mainly use ILD to refine elevations for every can-
didate azimuth. Based on the results of the previous two pro-
gresses, what we need to do is to calculate the similarity between
the IMFs of candidate directions in templates and the IMF of re-
ceived signals as

(22)

Finally, a Bayesian rule is employed to calculate the proba-
bilistic distribution of the candidate directions to make the final
decision expressed mathematically as

(23)

Above all, the detailed process is drawn in Algorithm 1.

V. EXPERIMENTS AND DISCUSSIONS

A. Experiments on CIPIC Dataset
The CIPIC database used in our experiments is measured by

the U. C. Davis CIPIC Interface Laboratory, which includes
HRTFs for 45 different subjects (i.e., 27 males, 16 females, and
the KEMAR with large and small pinnas). The database in-
volves 1250 measurements of HRTFs for each subject. These
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“standard” measurements were recorded at 25 different inter-
aural-polar azimuths and 50 different interaural-polar elevations
at 1 distance as Fig. 1 models. Additional “special” measure-
ments of the KEMAR manikin were made for the frontal and
horizontal planes [27].
Here we simulate a room-like enclose using the image

method [32]. The reverberation time RT60 is fixed to 200 ms,
and the corresponding reflection ratios of walls are obtained
by the Allen formulation. The head is put in (6 2 1.5) m.
A musical period is used as the source signal positioned at dif-
ferent directions. The reference Kemar head impulse response
is used, which is subject #21 in the CIPIC HRTF database.
The sampling frequency is 44.1 kHz. The simulation scene and
detailed parameters are illustrated in Fig. 9.
1) Azimuthal Localization Results: In order to testify the

superiority of our hierarchical acoustical localization algo-
rithm, we have compared the azimuthal localization correct
rate with different combinations of ITD, ILD and the newly
proposed IMF. In addition, several state-of-the-art methods
are also compared with this algorithm under different SNR
(signal-to-noise ratio) conditions. The necessary parameters
used in the experiments are shown in Table I. Note that the
frame length of STFT is partially small, because the previous
works on one hand have attested that the large frame length is
not appropriate for the TDC [25]. On the other hand, the bin-
aural signals with longer frame length would make designing
IMF more difficult as well as increasing the computational
complexity inevitably. The block length or observation time
represents the length of recorded and tested musical signals.
Table II shows the localization correct rates of azimuth for

Fig. 9. Simulation scene and parameters of experimental environments.

TABLE I
THE NECESSARY PARAMETERS USED IN EXPERIMENTS

different SNRs using three different combinations of ITD,
ILD and IMF. Among ITD, ILD and IMF, there are seven
different combinations totally. Above approximately 1–2 kHz,
the ITD-based azimuth estimates are ambiguous, which is
caused by the different choices in phase unwrapping. Although
there is no ambiguity for ILD-based localization, it has a larger
standard deviation than those based on ITD. In addition, the
ILD-based azimuth estimate cannot obtain a visual result for
low frequency bands. In practice, we can use ITD to evaluate
some crude azimuth candidates as well as the corresponding
probabilities. Then ILD is used to help phase unwrapping and
refine the azimuth estimate. Furthermore, IMF is designed
from the point of eliminating the disparity between binaural
signals so that it concludes some delay and attenuation units,
which are reflected in ITD and ILD. In other words, IMF is a
complex association of ITD and ILD in fact. That is why we
merely select three combinations, i.e., and

, for comparisons.
From Table II, we can see that in general the
-based method achieves more precise solutions than the
-based one in severe environments such as when

dB. However, when no noise is added, outperforms
obviously, and even achieve 100% correct rate

with 10 tolerance. A more detailed comparison is illustrated in
Fig. 10(a). By and large, the -based azimuth estimate can
work rather effectively in favorable encloses, but the perfor-
mance degrades rapidly with the SNR decreasing. In contrast,
the -based estimate can obtain better results under
low SNR environments. The noise used in our experiments is
white Gaussian noise. This is mainly due to that the random
noise has corrupted the available binaural signals in the severe
environments, which lead to extreme strait for designing IMFs.
At the same time, the TDC estimator can considerably extract
accurate ITD and ILD. Therefore, combining ITD, ILD and
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TABLE II
THE LOCALIZATION CORRECT RATE OF AZIMUTH IN DIFFERENT SNRS BY SEVERAL DIFFERENT COMBINATION OF

ITD, ILD AND IMF. ITD AND ILD ARE COMPUTED BY TIME-DELAY COMPENSATION

TABLE III
THE LOCALIZATION CORRECT RATE OF IN DIFFERENT SNRS COMPARING -BASED AZIMUTH ESTIMATES WITH OTHER METHODS

Fig. 10. (a) Comparing the azimuthal localization correct rate with different
combinations of ITD, ILD and IMF when the tolerant error is 5 . (b) Comparing
the azimuthal localization correct rate using several popular methods when the
tolerant error is 5 .

IMF for acoustic localization is reasonably significative under
the complex circumjacent conditions.
Table III shows some azimuthal estimate comparisons be-

tween and several other state-of-the-art
methods, such as Hierarchical System [15], Online Calibration
[16], Probabilistic Model [17], TDC-Fu [25]. As a matter of
fact, both [15] and [16] belong to the hierarchical methods with
different binaural cues. In [17], Willert et al. proposed a prob-
abilistic map to describe to the relationship between ITD and
ILD. The probabilistic map was generalized to be TDC as a
localization cue in [25], where [15], [16] and [17] have been
compared already. In [23], [24], we extended TDC to estimate
ITD and ILD, and used IMF as a new binaural cue. That is

why this paper compares these works together. We can con-
clude that in most cases has achieved the
best results generally, especially when the enclose is definitely
quite displays a tremendous superiority.
Some similar results have been shown in Fig. 10(b). Specifi-
cally saying, the performances among these five algorithms can
amount 95% , which is quite satisfactory.
In details, is the best one reaching 100%,
which benefits from the effective ability of IMF to denote direc-
tion. Besides, Hierarchical System has suboptimal performance
while Online Calibration is the worst one, which is probably
due to the different cues used. In Hierarchical System, ITD,
ILD and differential spatial cues are involved in three layers,
respectively, so that it can work better than two-layer systems
in principle. As to Probabilistic Model, the activity maps built
by the binaural cues are pretty affected by noise so that it local-
izes well against high SNRs. Based on the Probabilistic Model,
TDC-Fu actually revised the activity maps as compensated in-
tensity difference and it also took a two-layer framework sub-
sidiarily, thereby it localize better than the former generally.
However, there are small gaps among them in the noisy envi-

ronments. Intuitively, except the cases when 40 dB
dB, Probabilistic Model lags others clearly, which is caused by
the inaccurate activity maps affected by noises, and the other
four curves twine together. Yet when dealing with low SNRs,

, TDC-Fu and Hierarchical System can work
better than the others obviously. In TDC-Fu, is
utilized in the first layer for robust TDE, but Probability Model
does not have this trait. Online Calibration has two layers similar
with Hierarchical System, but the difference lies in calculating
ITDs in frequency subbands, which is not particularly useful for
azimuthal localization.
2) Elevation Localization Results: The localization space of

experiments conducted in this subsection is divided into 50 el-
evations ranging from to in step of 5.625 .
This increment divides the full angular into 64 equal parts,
but only 50 values are used in CIPIC measurement, because the
space shielded by the body can be neglected. Similar to the anal-
ysis in azimuthal localization, firstly we observe the elevation
localization results based on the three different combinations of
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TABLE IV
THE LOCALIZATION CORRECT RATE OF ELEVATION IN DIFFERENT SNRS BY SEVERAL DIFFERENT COMBINATION OF

ITD, ILD AND IMF. ITD AND ILD ARE COMPUTED BY TIME-DELAY COMPENSATION

TABLE V
THE LOCALIZATION CORRECT RATE OF IN DIFFERENT SNRS COMPARING -BASED ELEVATION ESTIMATES WITH OTHER METHODS

Fig. 11. (a) Comparing the elevation localization correct rate with different
combinations of ITD, ILD and IMF. (b) Comparing the elevation localization
correct rate using several popular methods .

, and . The elevation localization accuracy for
different SNRs is shown in Table IV. Obviously, has ac-
quired better results compared to the -based method,
and is the best choice. However, the perfor-
mance here is particularly worse than that of azimuth, which
reveals that is more affected by the azimuth. We have pre-
sumed that is more sensitive to the azimuth in Section IV,
therefore the phenomenon in Fig. 6 is confirmed. A more de-
tailed comparison is illustrated in Fig. 11(a). It is obvious that

is most accurate for the elevation localiza-
tion, thus IMF is helpful as an acoustic cue for localizing.
Table V shows the compared results of elevation localiza-

tion correct rate for different SNRs between the

-based estimates and the aforementioned popular localiza-
tion methods. We can see that has pre-
sented a more prominent advantage than that in azimuthal lo-
calization. Simultaneously, it is can be concluded that the ex-
isting state-of-the-art algorithms are less robust to elevation.
This is mainly due to that elevation localization largely depends
on ILD, but ITD offers little help. Besides, the precise extrac-
tion of ILD is crucially influenced by the environmental condi-
tions, accordingly those ILD-related algorithms with noise re-
duction unit are more likely to achieve better performance in
general. Since IMF implies ITD and ILD, and we have use ILD
to refine elevations in the second layer, has
reached the best performance predictably. Like the azimuthal
localization, obtains excellent results in the
environments without noise, such as 100% correct rate when

. Since Probabilistic Model can work well
against the high SNRs, it gets the proxime accessit in the quiet
environments, and then TDC-Fu. Nevertheless, it has less noise
immunity so as to lag others far behind against low SNRs, but
TDC-Fu, Online Calibration and Hierarchical System would lo-
calize much better. Indeed, all the five algorithms are all ILD-re-
lated. For example, they all take advantage of time difference
and intensity difference in the first and second layer, respec-
tively. As to Hierarchical System, the differential spectral cues
used in the third layer do not include any energetic information,
yet it aims to distinguish the front-end ambiguity. We can con-
clude that IMF is more effective than the differential spectral
cues for elevation localization.
Some more distinct comparisons of the five algorithms for

different SNRs with 5.625 tolerance is illustrated in Fig. 11(b).
We can see that in the two extreme environments, they have
little disparity in accuracy compared to each other on one hand.
Note that we should be more engaged on noise reduction in-
stead of modifying the localization strategy or acoustic cues
in the supremely noisy surroundings, such as dB.
In addition, in the quite noise-free environments the pre-exist-
ings can work accurately. Therefore, we should pay more atten-
tion to moderate noise field, such as working offices or meeting
rooms, and other acoustic adverse factors for sound localiza-
tion. However, on the other hand when 5 dB dB,
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Fig. 12. Scene graph of experimental environments. Red circles represents the
places of omnidirectional microphones.

is in the lead clearly. Seeing that elevation is
not monotonous with ITD or ILD, hence improving the eleva-
tion localization correct rate should begin with using more in-
dividual acoustic features to represent directions or formulating
elevation versus some parameters. Fortunately, as to practical
systems, the azimuth localization is frequently more important
than that of elevation.

B. Experiments for Human-Robot Interaction
Our Human-Robot Interaction system is designed on amobile

robot using a MARIAN TRACE8 multi-channel audio sample
card and two BSWA MPA416 microphones. Multi-threading
programming based on Direct Sound is adopted to ensure the
synchronization of audio signals. The scene graph of robot and
microphone array are shown in Fig. 12.
Experiments are implemented in a room of 8 8 m , where

the reverberation time RT60 is about 350 ms approximately.
Combining with the robot’s size, the linear distance of micro-
phones is set to 40 cm, which are placed on the shoulder of
the robot. Given that the height of the mouth is about 150 cm
for a standing adult, the plane of microphone field is chosen as
the standard when evaluating the localizing performance on the
horizontal plane and all the localization results have to be pro-
jected onto this standard plane. The robot is placed in the center
of the room, with another 96 points on the floor as tested sound
sources. The sound sources are evenly distributed in every 15
and four positions at each direction with a distance of 1, 2, 3, 4 m
to the center, respectively. At each position, 21 groups of speech
data from different people are recorded, the contents of speech
are the Chinese words “dingwei”, “pengpeng” and “guolai”,
which mean “location”, “robot’s name” and “come here”, re-
spectively.
Our experiments are conducted at working duration including

noises from air conditioner, fans and other silence-breakers,
where 10 dB dB. We use the TDC algorithm to
estimate ITD and ILD displayed in Fig. 13, where the radius of
sound source is 2m. It can be seen that ITD has a very weak

Fig. 13. The acoustic cues (time-delay and level difference) estimates based
on time-delay compensation when the radius is 2 m.

TABLE VI
LOCALIZATION ACCURACY OF HORIZONTAL AZIMUTHS BASED ON

fluctuation across different groups in each azimuth, and ILD
has an obvious distribution tendency despite irregularity within
groups. Further more, here we have not shown the IMFs of this
scene like the CIPIC database. Using a musical period as the
sound source, the localization accuracy of horizontal azimuths
based on is presented in Table VI. It can
be seen that our method effectively achieves accurate results
of 90% almost with reasonable error tolerance under the real
conditions. In most real HRI systems, azimuths are enough
for a robot to apperceive directions to interact with human. In
addition, from Table VI we can also see that the overall angular
error is bigger when the sound source is farther away from the
robot, i.e., the localization accuracy decreases with distance in-
creasing. Actually, the distance localization is more difficult in
the far field and those methods based on large-scale geometrical
microphone arrays are more likely to obtain accurate solutions.
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Fig. 14. The average localization accuracy and error in each direction.

TABLE VII
THE LOCALIZATION ACCURACY OF DIFFERENT SOUND ACTIVITIES

In addition, we have counted the average localization ac-
curacy and error for each direction of our HRI system as
Fig. 14 shows. We can conclude that the directions in front of
the robot are accurately localized and it is more difficult for
the two sides (near 0 and 180 ). This is probably due to that
ITD and IMF have larger variance in those directions around
the two sides, which was already conveyed in Figs. 3 and 5,
respectively, so that the HRI system is more possible to localize
to the abutting directions ambiguously. Besides, when two
microphones are used for acoustic localization in the 2-D space
free field, two points sharing the same ITD will exist and this
phenomena is called front-back confusion, which is neglected
and the front space is merely localized. If an artificial pinna for
audio microphone is added, this front-back ambiguity will be
eliminated, which is also one of our future works.
In order to verify the universality for the realistic sound

localization, five different sound activities are expected to
evaluate this method. All these five sound activities are very
common in daily life, including clapping hands, knocking
on a door, telephone ringing, screaming and glass smashing,
which are recorded in an office environment .
Table VII shows the localization accuracy, from which it can
be seen that these activities are well localized in the horizontal
plane such that when the tolerance is 5 , and the average
accuracy of azimuth can achieve more than 94.8%.

TABLE VIII
THE SPATIAL COMPLEXITY OF THE FIVE ALGORITHMS

TABLE IX
THE TIME COMPLEXITY OF THE FIVE ALGORITHMS

However, it is worth noting that the accuracies of glass
smashing are slightly lower than the others’. This phenom-
enon greatly depends on the sounding principle, because the
glass smashing has blank sounding time-slots and its energy
mainly distributes in the high frequency bands, thus performing
time-delay compensation overall might not be appropriate
but in sub-bands. As we know, ITD has an ambiguity in the
high frequency bands because of difference choices of phase
unwrapping, and selecting reliable frequency sub-bands is
usually difficult. Fortunately, within 10 of erroneous tolerance
our system has achieved more than 95% of correct rate such as
to satisfy the practical applications.

C. Complexity Analysis

Now we continue to analyze the computational complexity
of our algorithm. Let denote the number of az-
imuth, elevation, the channels of filterbank and the order of
IMFs, respectively, and we have . Considering the
algorithms mentioned above definitely concluding the training
procedure, the templates of ITD, ILD and IMF should be stored
before localization.
The spatial complexity of the five aforementioned algorithms

is shown in Table VIII. It can be observed that the storage of
is not the maximum, because we only need

to store ITDs, ILDs and IMFs in directions. However, al-
though TDC-Fu and Online Calibration just need to store two
acoustic cues as templates, they must take the divided frequency
sub-bands into account instead. Hierarchical System still re-
quires to consider the differential spectral cues in all sub-bands,
and Probabilistic Model builds an activity map for direc-
tions versus frequency in the frequency domain. Thus the newly
proposed IMF has not induce excess storage load for hardware
realization.
When taking the comparison as the basic operation, the time

complexity of the five algorithms is shown in Table IX. It is
clear to see that this method has achieved the lowest time com-
plexity than others because of the hierarchical acoustic local-
ization strategy, with which the previous layer provides candi-
dates for the following layer. We have counted the time con-
sumption of these five algorithms by random tests of 800 times,
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and successfully reduces the time consump-
tion from 0.5 s of TDC-Fu down to 0.35 s approximately, which
greatly relates to:
• calculates ITDs and ILDs simultane-
ously based on time-delay compensation, which decreases
the steps to evaluate the binaural cues and makes coding
procedure more concise.

• The excellent matching strategy of hierarchical framework
can also deflate candidates directions effectively.

Although, computer processors have developed significantly
nowadays and computational complexity is no longer a limi-
tation to certain extend, the real-time requirement is still rather
crucial to localization systems, especially in some situations like
speaker tracking, video conferencing, etc.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposes a robust hierarchical acoustic localiza-
tion method based on time-delay compensation (TDC) and in-
teraural matching filter (IMF). First, TDC algorithm is foremost
utilized to evaluate the common binaural cues, i.e., ITD and ILD
in the frequency and time domain, respectively. Although the
proposed GCC-TDC function is much alike to the famous Roth
weighting, the two mentalities begin with different standpoints.
Besides, we take advantage of interaural coherence to select re-
liable frames for GCC-TDC, which could decrease the variance
of ITDs compared to GCC-PHAT.
Actually, the newly designed acoustic cue IMF implies the

information of ITD and ILD, and it is even more robust than
. When tested on the CIPIC database, the IMF-based

localization is more accurate than the -based one
for both azimuth and elevation in the quiet surroundings, and
these results motivate us to use features
to design our localization system. The weakness of IMF would
yet be that noise easily affects its design. When comparing the
localization correct rate of our with sev-
eral state-of-the-art methods, the superiority is obviously re-
flected, especially in the moderately noisy environments, which
is mainly benefited from the perfect combination of
and IMF, because IMF can work well in the quiet circumstances
and computed by TDC has noisy robustness to some
extend. More importantly, our algorithm has not introduce ex-
cess spatial storage, and our practical HRI system can complete
an azimuthal localization with 90% accuracy rate approximately
within 0.35 s.
Furthermore, this works only take one design of IMF in the

experiments since the other scheme leads to the larger error/cost
function. Therefore, in the future we will try to adaptively com-
bine the two schemes according to the noisy conditions. We will
also pay more attention to the elevation localization, because
the experimental solutions show that the elevation localization
is much more difficult to determine than azimuth. Exploring a
new acoustic feature to represent elevation or modeling based
on some off-the-shelf cues maybe make a breakthrough, and
doing TDC in frequency sub-bands might overcome the aporia
of localizing abnormal sound activities like smashing. In addi-
tion, we will try to apply our system to the mobile robots, hand-
held devices to enhance the quality of communication, speaker
tracking applications, etc.
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