Papers Recommended

【CVPR】Revisiting Skeleton Based Action Recognition

Publication Date:2022-12-30     Return

Revisiting Skeleton-based Action Recognition

Shared by:Tianyu Guo
Research direction:Human Action Recognition
Title:Revisiting Skeleton-based Action Recognition
Authors:Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, Bo Dai
Institution:The Chinese University of HongKong, The University of Texas at Austin, Shanghai AI Laboratory
Abstract:Human skeleton, as a compact representation of human action, has received increasing attention in recent years. Many skeleton-based action recognition methods adopt GCNs to extract features on top of human skeletons. Despite the positive results shown in these attempts, GCN-based methods are subject to limitations in robustness, interoperability, and scalability. In this work, we propose PoseConv3D, a new approach to skeleton-based action recognition. PoseConv3D relies on a 3D heatmap volume instead of a graph sequence as the base representation of human skeletons. Compared to GCN-based methods, PoseConv3D is more effective in learning spatiotemporal features, more robust against pose estimation noises, and generalizes better in cross-dataset settings. Also, PoseConv3D can handle multiple-person scenarios without additional computation costs. The hierarchical features can be easily integrated with other modalities at early fusion stages, providing a great design space to boost the performance. PoseConv3D achieves the state-of-the-art on five of six standard skeleton-based action recognition benchmarks. Once fused with other modalities, it achieves the state-of-the-art on all eight multi-modality action recognition benchmarks. Code has been made available at: https://github.com/kennymckormick/pyskl.
Article link

click here